Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 1, pp 155–165 | Cite as

Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases

  • Ang Zhou
  • Patrick M. Crossland
  • Apparao Draksharapu
  • Andrew J. Jasniewski
  • Scott T. Kleespies
  • Lawrence QueJr.Email author
Original Paper
Part of the following topical collections:
  1. Special issue to celebrate the 80th birthday of Helmut Sigel

Abstract

Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of FeIII–O–CrIII and FeIII–O–MnIII complexes is described herein. The latter complexes may serve as models for the FeIII–X–MnIII active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV–Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The FeIII–O–CrIII complexes exhibit a three-band UV–Vis pattern that differs from the simpler features associated with FeIII–O–FeIII complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the FeIII–O–MnIII complexes resemble FeIII–O–FeIII complexes more closely. Resonance Raman characterization of the FeIII–O–MIII complexes reveals an 18O-sensitive vibration in the range of 760–890 cm−1. This feature has been assigned to the asymmetric FeIII–O–MIII stretching mode and correlates reasonably with the Fe–O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the FeIII–O–MnIII complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.

Keywords

Heterobimetallic Fe–O–M complexes Oxoiron(IV) complexes EXAFS analysis Resonance Raman spectroscopy Ribonucleotide reductase 

Abbreviations

BnTPEN

N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-1,2-diaminoethane

Hdpaq

2-[Bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamide

N4Py

N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine

TMC

1,4,8,11-Tetramethylcyclam

TMC-py

1-(Pyridyl-2′-methyl)-4,8,11-trimethyl-1,4,8,11-tetrazacyclotetradecane

TPA

Tris(2-pyridylmethyl)amine

H2ICIMP

2-(N-carboxylmethyl)-[N-(N-methylimidazolyl-2-methyl)aminomethyl]-[6-(N-isopropylmethyl)-[N-(N-methyl-imidazolyl-2-methyl)]aminomethyl-4-methylphenol])

HBPMP

2,6-Bis[(bis(2-pyridylmethyl)-amino)methyl]-4-methylphenol)

TACN

1,4,7-Triazacyclononane

Me3TACN

1,4,7-Trimethyl-1,4,7-triazacyclononane

Notes

Acknowledgements

This work was supported by the National Institutes of Health (Grant GM-38767 to L.Q.). XAS data were collected at the Stanford Synchrotron Radiation Lightsource, which is supported by the U.S. DOE under Contract No. DE-AC02-76SF00515. Use of Beamline 7–3 is supported by the DOE Office of Biological and Environmental Research and the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393).

Supplementary material

775_2017_1517_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1927 kb)

References

  1. 1.
    Högbom M, Stenmark P, Voevodskaya N, McClarty G, Gräslund A, Nordlund P (2004) Science 305:245–248CrossRefPubMedGoogle Scholar
  2. 2.
    Bollinger JM, Jiang W, Green MT, Krebs C (2008) Curr Opin Struct Biol 18:650–657CrossRefPubMedGoogle Scholar
  3. 3.
    Carboni M, Latour J-M (2011) Coord Chem Rev 255:186–202CrossRefGoogle Scholar
  4. 4.
    Griese JJ, Srinivas V, Högbom M (2014) J Biol Inorg Chem 19:759–774CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jiang W, Yun D, Saleh L, Barr EW, Xing G, Hoffart LM, Maslak M-A, Krebs C, Bollinger JM (2007) Science 316:1188–1191CrossRefPubMedGoogle Scholar
  6. 6.
    Jiang W, Hoffart LM, Krebs C, Bollinger JM (2007) Biochemistry 46:8709–8716CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jiang W, Yun D, Saleh L, Bollinger JM Jr, Krebs C (2008) Biochemistry 47:13736–13744CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Younker JM, Krest CM, Jiang W, Krebs C, Bollinger JM, Green MT (2008) J Am Chem Soc 130:15022–15027CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ (2017) J Am Chem Soc 139:1950–1957CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Andersson CS, Högbom M (2009) Proc Natl Acad Sci USA 106:5633–5638CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shafaat HS, Griese JJ, Pantazis DA, Roos K, Andersson CS, Popović-Bijelić A, Gråslund A, Siegbahn PE, Neese F, Lubitz W (2014) J Am Chem Soc 136:13399–13409CrossRefPubMedGoogle Scholar
  12. 12.
    Miller EK, Trivelas NE, Maugeri PT, Blaesi EJ, Shafaat HS (2017) Biochemistry 56:3369–3379CrossRefPubMedGoogle Scholar
  13. 13.
    Holman TR, Andersen KA, Anderson OP, Hendrich MP, Juarez-Garcia C, Münck E, Que L Jr (1990) Angew Chem Int Ed Engl 29:921–923CrossRefGoogle Scholar
  14. 14.
    Holman TR, Wang Z, Hendrich MP, Que L Jr (1995) Inorg Chem 34:134–139CrossRefGoogle Scholar
  15. 15.
    Carboni M, Clemancey M, Molton F, Pecaut J, Lebrun C, Dubois L, Blondin G, Latour J-M (2012) Inorg Chem 51:10447–104460CrossRefPubMedGoogle Scholar
  16. 16.
    Das B, Daver H, Singh A, Singh R, Haukka M, Demeshko S, Meyer F, Lisensky G, Jarenmark M, Himo F, Nordlander E (2014) Eur J Inorg Chem 2204–2212Google Scholar
  17. 17.
    Hotzelmann R, Wieghardt K, Flörke U, Haupt H-J, Weatherburn DC, Bonvoisin J, Blondin G, Girerd J-J (1992) J Am Chem Soc 114:1681–1696CrossRefGoogle Scholar
  18. 18.
    Zhou A, Kleespies ST, Van Heuvelen KM, Que L Jr (2015) Chem Commun 51:14326–14329CrossRefGoogle Scholar
  19. 19.
    Zhou A, Prakash J, Rohde GT, Klein JEMN, Kleespies ST, Draksharapu A, Fan R, Guo Y, Cramer CJ, Que L Jr (2016) Inorg Chem 56:518–527CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ching W, Zhou A, Klein JEMN, Fan R, Knizia G, Cramer CJ, Guo Y, Que L Jr (2017) Inorg Chem 56:11129–11140CrossRefPubMedGoogle Scholar
  21. 21.
    Prakash J, Rohde GT, Meier KK, Jasniewski AJ, Van Heuvelen KM, Münck E, Que L Jr (2015) J Am Chem Soc 137:3478–3481CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Draksharapu A, Rasheed W, Klein JEMN, Que L Jr (2017) Angew Chem Int Ed 56:9091–9095CrossRefGoogle Scholar
  23. 23.
    Rohde J-U, Torelli S, Shan X, Lim MH, Klinker EJ, Kaizer J, Chen K, Nam W, Que L Jr (2004) J Am Chem Soc 126:16750–16761CrossRefPubMedGoogle Scholar
  24. 24.
    Sanders-Loehr J, Wheeler WD, Shiemke AK, Averill BA, Loehr TM (1989) J Am Chem Soc 111:8084–8093CrossRefGoogle Scholar
  25. 25.
    Roe AL, Schneider DJ, Mayer RJ, Pyrz JW, Widom J, Que L Jr (1984) J Am Chem Soc 106:1676–1681CrossRefGoogle Scholar
  26. 26.
    Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314CrossRefGoogle Scholar
  27. 27.
    Wijeratne GB, Corzine B, Day VW, Jackson TA (2014) Inorg Chem 53:7622–7634CrossRefPubMedGoogle Scholar
  28. 28.
    Norman RE, Yan S, Que L Jr, Sanders-Loehr J, Backes G, Ling J, Zhang JH, O’Connor CJ (1990) J Am Chem Soc 112:1554–1562CrossRefGoogle Scholar
  29. 29.
    Kurtz DM Jr (1990) Chem Rev 90:585–606CrossRefGoogle Scholar
  30. 30.
    Havare N, Plattner DA (2012) Org Lett 14:5078–5081CrossRefPubMedGoogle Scholar
  31. 31.
    Schardt BC, Hill CL (1983) Inorg Chem 22:1563–1565CrossRefGoogle Scholar
  32. 32.
    Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Z-W, Chen Q-Y, Liu Q-S (2014) Transit Met Chem 39:917–924CrossRefGoogle Scholar
  34. 34.
    Ward AL, Elbaz L, Kerr JB, Arnold J (2012) Inorg Chem 51:4694–4706CrossRefPubMedGoogle Scholar
  35. 35.
    Zang Y, Kim J, Dong Y, Wilkinson EC, Appelman EH, Que L Jr (1997) J Am Chem Soc 119(18):4197–4205Google Scholar
  36. 36.
    Ankudinov A, Ravel B, Rehr J, Conradson S (1998) Phys Rev B 58:7565–7576CrossRefGoogle Scholar
  37. 37.
    George GN (1990) EXAFSPAK Stanford Synchrotron Radiation Laboratory, StanfordGoogle Scholar
  38. 38.
    Roelfes G, Lubben M, Chen K, Ho RYN, Meetsma A, Genseberger S, Hermant RM, Hage R, Mandal SK, Young VG, Zang Y, Kooijman H, Spek AL, Que L Jr, Feringa BL (1999) Inorg Chem 38:1929–1936CrossRefPubMedGoogle Scholar
  39. 39.
    Wojdyr M (2010) J Appl Crystallogr 43:1126–1128CrossRefGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Ang Zhou
    • 1
  • Patrick M. Crossland
    • 1
  • Apparao Draksharapu
    • 1
  • Andrew J. Jasniewski
    • 1
  • Scott T. Kleespies
    • 1
  • Lawrence QueJr.
    • 1
    Email author
  1. 1.Department of Chemistry and Center for Metals in BiocatalysisUniversity of MinnesotaMinneapolisUSA

Personalised recommendations