Skip to main content

Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata

Abstract

The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d 10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Binz P-A, Kägi JHR (1999) In: Klaassen C (ed) Metallothionein iv. Birkhäuser Verlag, Basel, pp 7–13

    Chapter  Google Scholar 

  2. Margoshes M, Vallee BL (1957) J Am Chem Soc 79:4813–4814

    CAS  Article  Google Scholar 

  3. Vallee BL (1979) In: Kägi JHR, Nordberg M (eds) Metallothionein. Birkhäuser Verlag, Basel, pp 19–40

    Chapter  Google Scholar 

  4. Palmiter RD (1998) Proc Natl Acad Sci USA 95:8428–8430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Kojima Y, Binz P-A, Kägi JHR (1999) In: Klaassen C (ed) Metallothionein iv. Birkhäuser Verlag, Basel, pp 3–6

    Chapter  Google Scholar 

  6. Freisinger E (2008) Dalton Trans 17:6663–6675

    Article  Google Scholar 

  7. Freisinger E (2009) Met Ions Life Sci 5:107–153

    CAS  Article  Google Scholar 

  8. Freisinger E (2010) Chimia 64:217–224

    CAS  Article  PubMed  Google Scholar 

  9. Freisinger E (2011) J Biol Inorg Chem 16:1035–1045

    CAS  Article  PubMed  Google Scholar 

  10. Cobbett C, Goldsbrough P (2002) Annu Rev Plant Biol 53:159–182

    CAS  Article  PubMed  Google Scholar 

  11. Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, Sadler PJ (2001) Proc Natl Acad Sci USA 98:9593–9598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Peroza EA, Schmucki R, Güntert P, Freisinger E, Zerbe O (2009) J Mol Biol 387:207–218

    CAS  Article  PubMed  Google Scholar 

  13. Freisinger E (2007) Inorg Chim Acta 360:369–380

    CAS  Article  Google Scholar 

  14. http://www.uniprot.org/uniprot/

  15. Legge GB, Martinez-Yamout MA, Hambly DM, Trinh T, Lee BM, Dyson HJ, Wright PE (2004) J Mol Biol 343:1081–1093

    CAS  Article  PubMed  Google Scholar 

  16. Peroza EA, Al Kaabi A, Meyer-Klaucke W, Wellenreuther G, Freisinger E (2009) J Inorg Biochem 103:342–353

    CAS  Article  PubMed  Google Scholar 

  17. Dage JL, Sun HJ, Halsall HB (1998) Anal Biochem 257:176–185

    CAS  Article  PubMed  Google Scholar 

  18. Hnizda A, Santrucek J, Sanda M, Strohalm M, Kodicek M (2008) J Biochem Biophys Method 70:1091–1097

    CAS  Article  Google Scholar 

  19. Miles EW (1977) Methods Enzymol 47:431–442

    CAS  Article  PubMed  Google Scholar 

  20. Tomas M, Pagani MA, Andreo CS, Capdevila M, Bofill R, Atrian S (2014) J Biol Inorg Chem 19:1149–1164

    CAS  Article  PubMed  Google Scholar 

  21. Good M, Vašák M (1986) Biochemistry 25:3328–3334

    CAS  Article  PubMed  Google Scholar 

  22. Vašák M, Kägi JHR, Holmquist B, Vallee BL (1981) Biochemistry 20:6659–6664

    Article  PubMed  Google Scholar 

  23. Krizek BA, Merkle DL, Berg JM (1993) Inorg Chem 32:937–940

    CAS  Article  Google Scholar 

  24. Guo JQ, Giedroc DP (1997) Biochemistry 36:730–742

    CAS  Article  PubMed  Google Scholar 

  25. Kapust RB, Tözser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Protein Eng 14:993–1000

    CAS  Article  PubMed  Google Scholar 

  26. Huber T, Freisinger E (2013) Dalton Trans 42:8878–8889

    CAS  Article  PubMed  Google Scholar 

  27. Pedersen AO, Jacobsen J (1980) Eur J Biochem 106:291–295

    CAS  Article  PubMed  Google Scholar 

  28. Wan X, Freisinger E (2009) Metallomics 1:489–500

    CAS  Article  PubMed  Google Scholar 

  29. Jelesarov I, Bosshard HR (1999) J Mol Recognit 12:3–18

    CAS  Article  PubMed  Google Scholar 

  30. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Anal Biochem 179:131–137

    CAS  Article  PubMed  Google Scholar 

  31. Peroza EA, Freisinger E (2008) Protein Expres Purif 57:217–225

    CAS  Article  Google Scholar 

  32. Freisinger E, Vašák M (2013) Met Ions Life Sci 11:339–371

    CAS  Article  PubMed  Google Scholar 

  33. Irvine GW, Pinter TBJ, Stillman MJ (2016) Metallomics 8:71–81

    CAS  Article  PubMed  Google Scholar 

  34. Duncan KER, Stillman MJ (2006) J Inorg Biochem 100:2101–2107

    Article  Google Scholar 

  35. Kowald GR, Sturzenbaum SR, Blindauer CA (2016) Int J Mol Sci 17:65

    Article  PubMed Central  Google Scholar 

  36. Peroza EA, Freisinger E (2007) J Biol Inorg Chem 12:377–391

    CAS  Article  PubMed  Google Scholar 

  37. Zhang Y (2008) BMC Bioinform 9:40

    Article  Google Scholar 

  38. http://www.rcsb.org/pdb/

  39. Kille P, Winge DR, Harwood JL, Kay J (1991) FEBS Lett 295:171–175

    CAS  Article  PubMed  Google Scholar 

  40. Vašák M, Kägi JHR (1981) Proc Natl Acad Sci USA 78:6709–6713

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bertini I, Luchinat C, Messori L, Vašák M (1989) J Am Chem Soc 111:7296–7300

    CAS  Article  Google Scholar 

  42. Overnell J, Good M, Vašák M (1988) Eur J Biochem 172:171–177

    CAS  Article  PubMed  Google Scholar 

  43. Loebus J, Peroza EA, Blüthgen N, Fox T, Meyer-Klaucke W, Zerbe O, Freisinger E (2011) J Biol Inorg Chem 16:683–694

    CAS  Article  PubMed  Google Scholar 

  44. Clark-Baldwin K, Tierney DL, Govindaswamy N, Gruff ES, Kim C, Berg J, Koch SA, Penner-Hahn JE (1998) J Am Chem Soc 120:8401–8409

    CAS  Article  Google Scholar 

  45. Vašák M, Kägi JHR (1983) Met Ions Biol Syst 15:213–273

    Google Scholar 

  46. Braun W, Vašák M, Robbins AH, Stout CD, Wagner G, Kägi JHR, Wüthrich K (1992) Proc Natl Acad Sci USA 89:10124–10128

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Henkel G, Krebs B (2004) Chem Rev 104:801–824

    CAS  Article  PubMed  Google Scholar 

  48. Calderone V, Dolderer B, Hartmann HJ, Echner H, Luchinat C, Del Bianco C, Mangani S, Weser U (2005) Proc Natl Acad Sci USA 102:51–56

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Swiss National Science Foundation (E.F.) and the National Institutes of Health (V.L.P., ES012236; A.D. and J.E.P.-H., GM 38047) for support of this research. Synchrotron measurements were made at the Stanford Synchrotron Radiation Laboratory, which is supported by the NIH Research Resource Program and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Freisinger.

Additional information

This work is dedicated to Professor Dr. Dr. h.c. Helmut Sigel with the most heartfelt wishes for his 80th birthday and many, many years to come.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4545 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cabral, A.C.S., Jakovleska, J., Deb, A. et al. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata . J Biol Inorg Chem 23, 91–107 (2018). https://doi.org/10.1007/s00775-017-1513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1513-9

Keywords

  • Metallothionein
  • Plant
  • Zinc
  • Cadmium
  • Cobalt
  • Histidine
  • Dynamic light scattering
  • EXAFS