Skip to main content
Log in

Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The enzymes nitrous oxide reductase (N2OR) and cytochrome c oxidase (COX) are constituents of important biological processes. N2OR is the terminal reductase in a respiratory chain converting N2O to N2 in denitrifying bacteria; COX is the terminal oxidase of the aerobic respiratory chain of certain bacteria and eukaryotic organisms transforming O2 to H2O accompanied by proton pumping. Different spectroscopies including magnetic resonance techniques, were applied to show that N2OR has a mixed-valent Cys-bridged [Cu1.5+(CyS)2Cu1.5+] copper site, and that such a binuclear center, called CuA, does also exist in COX. A sequence motif shared between the CuA center of N2OR and the subunit II of COX raises the issue of a putative evolutionary relationship of the two enzymes. The suggestion of a binuclear CuA in COX, with one unpaired electron delocalized between two equivalent Cu nuclei, was difficult to accept originally, even though regarded as a clever solution to many experimental observations. This minireview in honor of Helmut Sigel traces several of the critical steps forward in understanding the nature of CuA in N2OR and COX, and discusses its unique electronic features to some extent including the contributions made by the development of methodology and the discovery of a novel multi-copper enzyme.

Graphical Abstract

Left: X-band (9.130 GHz) and C-band (4.530 GHz, 1st harmonic display of experimental spectrum) EPR spectra of bovine heart cytochrome c oxidase, recorded at 20K. Right: Ribbon presentation of the CuA domain in cytochrome c oxidase and nitrous oxide reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. http://www.chemie.unibas.ch/~sigel/index.html

  2. Sigel H, Brintzinger H (1963) Helv Chim Acta 46:701–712

    CAS  Google Scholar 

  3. Sigel H, Brintzinger HH, Erlenmeyer H (1963) Helv Chim Acta 46:712–719

    CAS  Google Scholar 

  4. Sigel H, Brintzinger HH (1964) Helv Chim Acta 47:1701–1717. https://doi.org/10.1002/hlca.19640470706

    Article  CAS  Google Scholar 

  5. McCormick DB, Griesser R, Sigel H (1974) Met Ions Biol Syst 1:213–247

    CAS  Google Scholar 

  6. Sands RH, Beinert H (1959) Biochem Biophys Commun 1:175–178. https://doi.org/10.1016/0006-291X(59)90013-0

    Article  CAS  Google Scholar 

  7. Beinert H, Griffiths DE, Wharton DC, Sands RH (1962) J Biol Chem 237:2337–2346

    CAS  PubMed  Google Scholar 

  8. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708

    Article  CAS  PubMed  Google Scholar 

  9. Vänngård T (1972) In: Swartz HM, Bolton JR, Borg DC (eds) Copper proteins. Wiley, New York, pp 411–447

    Google Scholar 

  10. Stevens TH, Martin CT, Wang H, Brudvig GW, Scholes CP, Chan SI (1982) J Biol Chem 257:12106–12113

    CAS  PubMed  Google Scholar 

  11. Chan SI, Li PM (1990) Biochemistry 29:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Gurbiel RJ, Fann Y-C, Surerus KK, Werst MM, Musser SM, Doan PE, Chan SI, Fee JA, Hoffman BM (1993) J Am Chem Soc 115:10888–10894

    Article  CAS  Google Scholar 

  13. Mims WB, Peisach J, Shaw RW, Beinert H (1980) J Biol Chem 255:6843–6846

    CAS  PubMed  Google Scholar 

  14. Brudvig GW, Blair DF, Chan SI (1984) J Biol Chem 259:11001–11009

    CAS  PubMed  Google Scholar 

  15. Beinert H (1995) Chem Biol 2:781–785

    Article  CAS  PubMed  Google Scholar 

  16. Beinert H (1997) Eur J Biochem 245:521–532

    Article  CAS  PubMed  Google Scholar 

  17. Zumft WG, Kroneck PMH (2006) Adv Microb Physiol 52(107–22):7. https://doi.org/10.1016/S0065-2911(06)52003-X

    Google Scholar 

  18. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Chem Rev 114:4366–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Chem Rev 114:3659–3853. https://doi.org/10.1021/cr400327t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bloch H (1969) Basler Stadtbuch, 37–40. https://www.baslerstadtbuch.ch/.permalink/stadtbuch/16fe260b-51f4-47d1-b298-ff3691d9d265

  21. Valentine J, O’Halloran TV (1999) Curr Opin Chem Biol 3:129–130

    Article  CAS  PubMed  Google Scholar 

  22. Holm RH, Solomon EI (2004) Chem Rev 104:347–348

    Article  CAS  PubMed  Google Scholar 

  23. Hemmerich P, Veeger C, Wood HCS (1965) Angew Chem Int Ed 4:671–687

    Article  CAS  Google Scholar 

  24. Beinert H, Massey V (1982) Trends Biochem Sci 7:43–44. https://doi.org/10.1016/0968-0004(82)90069-X

    Article  CAS  Google Scholar 

  25. Hemmerich P (1966) In: Peisach J, Aisen P, Blumberg WE (eds) The biochemistry of copper. Academic Press, New York, pp 15–34

    Google Scholar 

  26. Hemmerich P, Beinert H, Vänngård T (1966) Angew Chem Int Ed 5:422–423

    Article  CAS  Google Scholar 

  27. Hemmerich P, Sigwart C (1963) Experientia 19:488–489

    Article  CAS  Google Scholar 

  28. Sigwart C, Hemmerich P, Spence JT (1968) Inorg Chem 7:2545–2548. https://doi.org/10.1021/ic50070a015

    Article  CAS  Google Scholar 

  29. Sigwart C, Kroneck PMH, Hemmerich P (1970) Helv Chim Acta 53:177–185. https://doi.org/10.1002/hlca.19700530125

    Article  CAS  Google Scholar 

  30. Kroneck PMH, Naumann C, Hemmerich P (1971) Inorg Nucl Chem Lett 7:659–666. https://doi.org/10.1016/0020-1650(71)80052-1

    Article  CAS  Google Scholar 

  31. Kroneck PMH (1975) J Am Chem Soc 97:3839–3841. https://doi.org/10.1021/ja00846a059

    Article  CAS  PubMed  Google Scholar 

  32. Vortisch V, Kroneck PMH, Hemmerich P (1976) J Am Chem Soc 98:2821–2826. https://doi.org/10.1021/ja00426a025

    Article  CAS  Google Scholar 

  33. Itoh S, Nagagawa M, Fukuzumi S (2001) J Am Chem Soc 123:4087–4088

    Article  CAS  PubMed  Google Scholar 

  34. Neuba A, Haase R, Meyer-Klaucke W, Flörke U, Henkel G (2012) Angew Chem Int Ed 51:1714–1718

    Article  CAS  Google Scholar 

  35. Thomas AM, Lin B-L, Wasinger EC, Stack TDP (2013) J Am Chem Soc 135:18912–18919

    Article  CAS  PubMed  Google Scholar 

  36. Ording-Wenker ECM, van der Plas M, Siegler MA, Bonnet S, Bickelhaupt FM, Fonseca Guerra C, Bouwman E (2014) Inorg Chem 53:8494–8504. https://doi.org/10.1021/ic501060w

    Article  CAS  PubMed  Google Scholar 

  37. Birker PJML, Freeman HC (1976) J Chem Soc Chem Commun 9:312–313. https://doi.org/10.1039/C39760000312

    Article  Google Scholar 

  38. Houser RP, Young VG, Tolman WB (1995) J Am Chem Soc 117:10745–10746. https://doi.org/10.1021/ja00148a018

    Article  CAS  Google Scholar 

  39. Houser RP, Young VG, Tolman WB (1996) J Am Chem Soc 118:2101–2102. https://doi.org/10.1021/ja953776m

    Article  CAS  Google Scholar 

  40. Warburg O (1932) Angew Chem 45:1–6. https://doi.org/10.1002/ange.19320450102

    Article  CAS  Google Scholar 

  41. Person P, Wainio WW, Eichels B (1953) J Biol Chem 202:369–381

    CAS  PubMed  Google Scholar 

  42. Elvehjem CA (1931) J Biol Chem 90:111–132

    Google Scholar 

  43. Cohen E, Elvehjem CA (1934) J Biol Chem 107:97–105

    CAS  Google Scholar 

  44. Keilin D, Hartree EF (1939) Proc R Soc (Lond.) B127:167–191

    Article  Google Scholar 

  45. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 37:660–669

    Article  Google Scholar 

  46. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074

    Article  CAS  PubMed  Google Scholar 

  47. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa R (1996) Science 272:1136–1144

    Article  CAS  PubMed  Google Scholar 

  48. Williams PA, Blackburn NJ, Sanders D, Bellamy H, Stura EA, Fee JA, McRee DE (1999) Nat Struct Biol 6:509–516

    Article  CAS  PubMed  Google Scholar 

  49. Soulimane T, Buse G, Bourenkov GP, Bartunik H, Huber R, Than ME (2000) EMBO J 19:1766–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beinert H (1980) Coord Chem Rev 33:55. https://doi.org/10.1016/S0010-8545(00)80398-7

    Article  CAS  Google Scholar 

  51. Beinert H (1991) J Inorg Biochem 44:173–218. https://doi.org/10.1016/0162-0134(91)80054-L

    Article  CAS  PubMed  Google Scholar 

  52. Beinert H (1996) J Inorg Biochem 64:79–100. https://doi.org/10.1016/0162-0134(96)00083-9

    Article  CAS  PubMed  Google Scholar 

  53. Karlin KD, Tyeklár Z (1993) Bioinorganic chemistry of copper. Chapman & Hall, New York

    Book  Google Scholar 

  54. Greenwood C, Hill BC, Barber D, Eglinton DG, Thomson AJ (1983) Biochem J 215:303–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomson AJ, Greenwood C, Peterson J, Barrett CP (1986) J Inorg Biochem 28:195–205

    Article  CAS  PubMed  Google Scholar 

  56. Greenwood C, Thomson AJ, Barrett CP, Peterson J, George GN, Fee JA, Reichardt J (1988) Ann N Y Acad Sci 550:47–52

    Article  CAS  PubMed  Google Scholar 

  57. Pan LP, Li Z, Larsen R, Chan SI (1991) J Biol Chem 266:1367–1370

    CAS  PubMed  Google Scholar 

  58. Steffens GCM, Soulimane T, Wolff G, Buse G (1993) Eur J Biochem 213:1149–1157

    Article  CAS  PubMed  Google Scholar 

  59. Adman ET (1991) Adv Protein Chem 42:145–197

    Article  CAS  PubMed  Google Scholar 

  60. Dennison C, Canters GW (1996) Recl Trav Chim Pays Bas 115:345–351

    Article  CAS  Google Scholar 

  61. Vila AJ, Fernandez CO (2001) Copper in electron transfer proteins. In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker, New York, pp 813–856

    Google Scholar 

  62. Lu Y (2003) Cupredoxins. In: Que L, Tolman WB (eds) Biocoordination chemistry. Comprehensive coordination chemistry II: from biology to nanotechnology, vol 8. Elsevier, Oxford, pp 1–32

    Google Scholar 

  63. Dennison C, Vijgenboom E, de Vries S, van der Oost J, Canters GW (1995) FEBS Lett 365:92–94

    Article  CAS  PubMed  Google Scholar 

  64. Hay M, Richards JH, Lu Y (1996) Proc Natl Acad Sci USA 93:461–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robinson H, Ang MC, Gao Y-G, Hay MT, Lu Y, Wang AH-J (1999) Biochemistry 38:5677–5683

    Article  CAS  PubMed  Google Scholar 

  66. Viebrock A, Zumft WG (1988) J Bacteriol 170:4658–4668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol 1. Springer, New York, pp 554–582

    Google Scholar 

  68. Saraste M, Castresana J (1994) FEBS Lett 341:1–4

    Article  CAS  PubMed  Google Scholar 

  69. van der Oost J, de Boer APN, de Gier JWL, Zumft WG, Stouthamer AH, van Spanning RJM (1994) FEMS Microbiol Lett 121:1–10

    Article  PubMed  Google Scholar 

  70. Zumft WG, Matsubara T (1982) FEBS Lett 148:102–107

    Article  Google Scholar 

  71. Zumft WG, Coyle CL, Frunzke K (1985) FEBS Lett 183:240–244

    Article  CAS  Google Scholar 

  72. Pomowski A, Zumft WG, Kroneck PMH, Einsle O (2011) Nature 477:234–238. https://doi.org/10.1038/nature10332

    Article  CAS  PubMed  Google Scholar 

  73. Wüst A, Schneider L, Pomowski A, Zumft WG, Kroneck PMH, Einsle O (2012) Biol Chem 393:1067–1077. https://doi.org/10.1515/hsz-2012-01771

    Article  PubMed  CAS  Google Scholar 

  74. Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJG, Moura I, Cambillau C (2000) Nat Struct Biol 7:191–195

    Article  CAS  PubMed  Google Scholar 

  75. Rasmussen T, Berks BC, Sanders-Loehr J, Dooley DM, Zumft WG, Thomson AJ (2000) Biochemistry 39:12753–12756

    Article  CAS  PubMed  Google Scholar 

  76. Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JJG, Moura I, Tegoni M, Cambillau C (2000) J Biol Chem 275:41133–41136

    Article  CAS  PubMed  Google Scholar 

  77. Rasmussen T, Berks BC, Butt JN, Thomson AJ (2002) Biochem J 364:807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K (2003) Biochem J 369:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oganesyan VS, Rasmussen T, Fairhurst S, Thomson AJ (2004) Dalton Trans 7:996–1002

    Article  CAS  Google Scholar 

  80. Coyle CL, Zumft WG, Kroneck PMH, Körner H, Jakob W (1985) Eur J Biochem 153:459–467. https://doi.org/10.1111/j.1432-1033.1985.tb09324.x

    Article  CAS  PubMed  Google Scholar 

  81. Riester J, Zumft WG, Kroneck PMH (1989) Eur J Biochem 178:751–762. https://doi.org/10.1111/j.1432-1033.1989.tb14506.x

    Article  CAS  PubMed  Google Scholar 

  82. Hagen WR (2006) Dalton Trans 37:4415–4434. https://doi.org/10.1039/B608163K

    Article  CAS  Google Scholar 

  83. Solomon EI, Lowery MD (1993) Science 259:1575–1581

    Article  CAS  PubMed  Google Scholar 

  84. Froncisz W, Scholes CP, Hyde JS, Wei Y-H, King TE, Shaw RW, Beinert H (1979) J Biol Chem 254:7482–7484

    CAS  PubMed  Google Scholar 

  85. Malkin R, Malmström BG (1970) Adv Enzymol 33:177–244

    CAS  PubMed  Google Scholar 

  86. Froncisz W, Hyde JS (1980) J Chem Phys 73:3123–3131

    Article  CAS  Google Scholar 

  87. Froncisz W, Hyde JS (1982) J Magn Reson 47:515–521

    CAS  Google Scholar 

  88. Kroneck PMH, Antholine WE, Riester J, Zumft WG (1988) FEBS Lett 242:70–74

    Article  CAS  PubMed  Google Scholar 

  89. Westmoreland TD, Wilcox DE, Baldwin MJ, Mims WB, Solomon EI (1989) J Am Chem Soc 111:6106–6123

    Article  CAS  Google Scholar 

  90. Mims WB (1976) The linear electric field effect in paramagnetic resonance. Clarendon Press, Oxford

    Google Scholar 

  91. Gerstman BS, Brill AS (1988) Phys Rev A 37:2151–2164

    Article  CAS  Google Scholar 

  92. Neese F (1997) Electronic structure and spectroscopy of novel copper chromophores in biology. Ph.D. Dissertation, University of Konstanz, Germany

  93. Kroneck PMH, Antholine WE, Kastrau DHW, Buse G, Steffens GCM, Zumft WG (1990) FEBS Lett 268:274–276. https://doi.org/10.1016/0014-5793(90)81026-K

    Article  CAS  PubMed  Google Scholar 

  94. Antholine WE, Kastrau DHW, Steffens GCM, Buse G, Zumft WG, Kroneck PMH (1992) Eur J Biochem 209:875–881. https://doi.org/10.1111/j.1432-1033.1992.tb17360.x

    Article  CAS  PubMed  Google Scholar 

  95. Hay MT, Lu Y (2000) J Biol Inorg Chem 5:699–712

    Article  CAS  PubMed  Google Scholar 

  96. Savelieff MG, Wilson TD, Elias Y, Nilges MJ, Garner DK, Lu Y (2008) Proc Natl Acad Sci (USA) 105:7919–7924

    Article  CAS  Google Scholar 

  97. Savelieff M, Lu Y (2010) J Biol Inorg Chem 15:461–483

    Article  CAS  PubMed  Google Scholar 

  98. Lukoyanov D, Berry SM, Lu Y, Antholine WE, Scholes CP (2002) Biophys J 82:2758–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zickermann V, Verkhovsky M, Morgan J, Wikström M, Anemüller S, Bill E, Steffens GCM, Ludwig B (1995) Eur J Biochem 234:686–693

    Article  CAS  PubMed  Google Scholar 

  100. Li PM, Malmström BG, Chan SI (1989) FEBS Lett 248:210–211

    Article  CAS  PubMed  Google Scholar 

  101. Kroneck PMH, Antholine WE, Riester J, Zumft WG (1989) FEBS Lett 248:212–213

    Article  CAS  PubMed  Google Scholar 

  102. Malmström BG (1990) Arch Biochem Biophys 280:233–241

    Article  PubMed  Google Scholar 

  103. Yoshikawa S, Shimada A, Shinzawa-Itoh K (2015) Met Ions Life Sci 15:89–130

    CAS  PubMed  Google Scholar 

  104. Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M (1995) Proc Natl Acad Sci USA 92:11955–11959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sinnecker S, Neese F (2007) Top Curr Chem 268:47–83. https://doi.org/10.1007/128_2006_081

    Article  CAS  Google Scholar 

  106. Neese F, Zumft WG, Antholine WE, Kroneck PMH (1996) J Am Chem Soc 118:8692–8699

    Article  CAS  Google Scholar 

  107. Farrar JA, Neese F, Lappalainen P, Kroneck PMH, Saraste M, Zumft WG, Thomson AJ (1996) J Am Chem Soc 118:11501–11514

    Article  CAS  Google Scholar 

  108. Neese F, Kappl R, Hüttermann J, Zumft WG, Kroneck PMH (1998) J Biol Inorg Chem 3:53–67

    CAS  Google Scholar 

  109. Gamelin DR, Randall DW, Hay MT, Houser RP, Mulder TC, Canters GW, de Vries S, Tolman WB, Lu Y, Solomon EI (1998) J Am Chem Soc 120:5246–5526

    Article  CAS  Google Scholar 

  110. Randall GW, Gamelin DR, LaCroix LB, Solomon EI (2000) J Biol Inorg Chem 5:16–19

    CAS  PubMed  Google Scholar 

  111. DeBeer George S, Metz M, Szilagyi RK, Wang H, Cramer SP, Lu Y, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2001) J Am Chem Soc 123:5757–5767

    Article  CAS  Google Scholar 

  112. Olsson MHM, Ryde U (2001) J Am Chem Soc 123:7866–7876

    Article  CAS  PubMed  Google Scholar 

  113. Mchaourab HS, Pfenninger S, Antholine WE, Felix CC, Hyde JS, Kroneck PMH (1993) Biophys J 64:1576–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pfenninger S, Antholine WE, Barr ME, Hyde JS, Kroneck PMH, Zumft WG (1995) Biophys J 69:2761–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bertini I, Bren KL, Clemente A, Fee JA, Gray HB, Luchinat C, Malmström BG, Richards JH, Sanders D, Slutter CE (1996) J Am Chem Soc 118:11658–11659

    Article  CAS  Google Scholar 

  116. Luchinat C, Soriano A, Djinovic-Carugo K, Saraste M, Malmström BG, Bertini I (1997) J Am Chem Soc 119:11023–11027

    Article  CAS  Google Scholar 

  117. Salgado J, Warmerdam G, Bubacco L, Canters GW (1998) Biochemistry 19:7378–7389

    Article  Google Scholar 

  118. Abriata LA, Ledesma GN, Pierattelli R, Vila AJ (2009) J Am Chem Soc 131:1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaballa M-E, Luciano LA, Donaire A, Vila AJ (2012) Proc Natl Acad Sci USA 109:9254–9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alvarez-Paggi D, Zitare UA, Szuster J, Morgada MN, Leguto AJ, Vila AJ, Murgida DH (2017) J Am Chem Soc 139:9803–9806

    Article  CAS  PubMed  Google Scholar 

  121. Holz RC, Alvarez ML, Zumft WG, Dooley DM (1999) Biochemistry 38:11164–11171

    Article  CAS  PubMed  Google Scholar 

  122. Blackburn NJ, de Vries S, Barr ME, Houser RP, Tolman WB, Sanders D, Fee JA (1997) J Am Chem Soc 119:6135–6143

    Article  CAS  Google Scholar 

  123. Larsson S, Källebring B, Wittung P, Malmström BG (1995) Proc Natl Acad Sci USA 92:7167–7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ramirez BE, Malmström BG, Winkler JR, Gray HB (1995) Proc Natl Acad Sci USA 92:11949–11951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Henkel G, Müller A, Weissgräber S, Buse G, Soulimane T, Steffens GCM, Nolting H-F (1995) Angew Chem Int Ed 34:1488–1492

    Article  CAS  Google Scholar 

  126. Toftlund H, Becher J, Olesen PH, Pedersen JZ (1985) Isr J Chem 25:56–65

    Article  CAS  Google Scholar 

  127. Harding C, McKee V, Nelson J (1991) J Am Chem Soc 113:9684–9685. https://doi.org/10.1021/ja00025a050

    Article  CAS  Google Scholar 

  128. Farrar JA, McKee V, Al-Obaidi AHR, McGarvey JJ, Nelson J, Thomson AJ (1995) Inorg Chem 34:1302–1303

    Article  CAS  Google Scholar 

  129. Kababya S, Nelson J, Calle C, Neese F, Goldfarb D (2006) J Am Chem Soc 128:2017–2029. https://doi.org/10.1021/ja056207f

    Article  CAS  PubMed  Google Scholar 

  130. LeCloux DD, Davydov R, Lippard SJ (1998) Inorg Chem 37:6814–6826

    Article  CAS  PubMed  Google Scholar 

  131. He C, Lippard SJ (2000) Inorg Chem 39:5225–5231

    Article  CAS  PubMed  Google Scholar 

  132. Gupta R, Zhang ZH, Powell D, Hendrich MP, Borovik AS (2002) Inorg Chem 41:5100–5106

    Article  CAS  PubMed  Google Scholar 

  133. Harkins SB, Peters JC (2004) J Am Chem Soc 126:2885–2893

    Article  CAS  PubMed  Google Scholar 

  134. Witte M, Grimm-Lebsanft B, Goos A, Binder S, Rübhausen M, Bernard M, Neuba A, Gorelsky S, Gerstmann U, Henkel G, Schmidt WG, Herres-Pawlis S (2016) J Comp Chem 37:2181–2192. https://doi.org/10.1002/jcc.24439

    Article  CAS  Google Scholar 

  135. Zumft WG (1997) Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Schneider LK, Wüst A, Pomowski A, Zhang L, Einsle O (2014) Met Ions Life Sci 14:177–210

    Article  CAS  PubMed  Google Scholar 

  137. Michel H (1998) Proc Natl Acad Sci USA 95:12819–12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Belevich I, Verkhovsky MI, Wikström M (2006) Nature 440:829–832

    Article  CAS  PubMed  Google Scholar 

  139. Yoshikawa S, Muramoto K, Shinzawa-Itoh K (2011) Annu Rev Biophys 40:205–223

    Article  CAS  PubMed  Google Scholar 

  140. Wilson MT, Lalla-Maharajh W, Darley-Usmar V, Bonaventura J, Bonaventura C, Brunori M (1980) J Biol Chem 255:2722–2728

    CAS  PubMed  Google Scholar 

  141. Kornberg A (2000) J Bacteriol 182:3613–3618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lu Y (2006) Angew Chem Int Ed 45:5588–5601

    Article  CAS  Google Scholar 

  143. Tolman WB, Carrier SM, Ruggiero CE, Antholine WE, Whittacker J (1993) In: Karlin KD, Tyeklár Z (eds) Bioinorganic chemistry of copper. Chapman & Hall, New York, pp 406–418

    Chapter  Google Scholar 

  144. Tolman WB (2010) Angew Chem Int Ed 49:1018–1024

    Article  CAS  Google Scholar 

  145. Farver O, Lu Y, Ang MC, Pecht I (1999) Proc Natl Acad Sci USA 96:899–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

My sincere thanks go to Jim Hyde and his crew for the exciting time at the National Biomedical EPR Center in Milwaukee, and to all my students, co-workers and collaborators, named in the cited references, for all their valuable contributions. Work in the laboratory was supported by the Deutsche Forschungsgemeinschaft, the National Science Foundation, the Volkswagen-Stiftung, the German–Israel Foundation, and the University of Konstanz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. H. Kroneck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroneck, P.M.H. Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase. J Biol Inorg Chem 23, 27–39 (2018). https://doi.org/10.1007/s00775-017-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1510-z

Keywords

Navigation