Skip to main content
Log in

A fluorescent oxaliplatin derivative for investigation of oxaliplatin resistance using imaging techniques

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxaliplatin is the backbone of chemotherapy for advanced colorectal cancer and undergoes clinical trials for treatment of other tumour entities. However, acquired resistance is a major hurdle. Confocal microscopy is a useful tool to get an insight into the mechanisms of resistance but it requires fluorescent compounds. This work describes the synthesis of the novel oxaliplatin derivative (CFDA-oxPt) featuring 5(6)-carboxyfluorescein diacetate and evaluation of its applicability for the investigation of oxaliplatin resistance using imaging techniques. CFDA-oxPt was somewhat less cytotoxic than oxaliplatin in sensitive colorectal cancer cells, with EC50 values of 26 and 5.8 µM, respectively. Nevertheless, the potency of the novel complex was significantly decreased to the EC50 of 711.2 µM in oxaliplatin-resistant cells, as was the case for oxaliplatin (EC50 = 81 µM). After incubation, both nuclear and cytosolic localisation was observed. Over time CFDA-oxPt concentrated near the cell membrane and in the vesicular structures, in contrast to the platinum-free label, which was rapidly excreted. These findings suggest that CFDA-oxPt can be used to study oxaliplatin resistance and open the route to new fluorophore-tethered oxaliplatin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perego P, Robert J (2016) Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol 77(1):5–18

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Balibrea E, Martinez-Cardus A, Gines A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Buges C, Bystrup S, Esteller M, Abad A (2015) Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther 14(8):1767–1776

    Article  CAS  PubMed  Google Scholar 

  3. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, Pritchard JR, Pommier Y, Lippard SJ, Hemann MT (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23(4):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein AV, Hambley TW (2009) Platinum drug distribution in cancer cells and tumors. Chem Rev 109(10):4911–4920

    Article  CAS  PubMed  Google Scholar 

  5. Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ (2011) Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther 338(2):537–547

    Article  CAS  PubMed  Google Scholar 

  6. Hall MD, Alderden RA, Zhang M, Beale PJ, Cai Z, Lai B, Stampfl AP, Hambley TW (2006) The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J Struct Biol 155(1):38–44

    Article  CAS  PubMed  Google Scholar 

  7. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl AP, Hambley TW (2003) The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J Biol Inorg Chem 8(7):726–732

    Article  CAS  PubMed  Google Scholar 

  8. Modok S, Scott R, Alderden RA, Hall MD, Mellor HR, Bohic S, Roose T, Hambley TW, Callaghan R (2007) Transport kinetics of four- and six-coordinate platinum compounds in the multicell layer tumour model. Br J Cancer 97(2):194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang JZ, Bryce NS, Lanzirotti A, Chen CK, Paterson D, de Jonge MD, Howard DL, Hambley TW (2012) Getting to the core of platinum drug bio-distributions: the penetration of anti-cancer platinum complexes into spheroid tumour models. Metallomics 4(11):1209–1217

    Article  CAS  PubMed  Google Scholar 

  10. Legin AA, Schintlmeister A, Jakupec MA, Galanski M, Lichtscheidl I, Wagner M, Keppler BK (2014) NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem Sci 5(8):3135–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benedetti BT, Peterson EJ, Kabolizadeh P, Martinez A, Kipping R, Farrell NP (2011) Effects of noncovalent platinum drug-protein interactions on drug efficacy: use of fluorescent conjugates as probes for drug metabolism. Mol Pharm 8(3):940–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall MD, Okabe M, Shen D-W, Liang X-J, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  PubMed  Google Scholar 

  13. Jagodinsky JC, Sulima A, Cao Y, Poprawski JE, Blackman BN, Lloyd JR, Swenson RE, Gottesman MM, Hall MD (2015) Evaluation of fluorophore-tethered platinum complexes to monitor the fate of cisplatin analogs. J Biol Inorg Chem 20(7):1081–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Katano K, Safaei R, Samimi G, Holzer A, Tomioka M, Goodman M, Howell SB (2004) Confocal microscopic analysis of the interaction between cisplatin and the copper transporter ATP7B in human ovarian carcinoma cells. Clin Cancer Res 10(13):4578–4588

    Article  CAS  PubMed  Google Scholar 

  15. Liang X-J, Shen D-W, Chen KG, Wincovitch SM, Garfield SH, Gottesman MM (2005) Trafficking and localization of platinum complexes in cisplatin-resistant cell lines monitored by fluorescence-labeled platinum. J Cell Physiol 202(3):635–641

    Article  CAS  PubMed  Google Scholar 

  16. Miller MA, Askevold B, Yang KS, Kohler RH, Weissleder R (2014) Platinum compounds for high-resolution in vivo cancer imaging. ChemMedChem 9(6):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molenaar C, Teuben JM, Heetebrij RJ, Tanke HJ, Reedijk J (2000) New insights in the cellular processing of platinum antitumor compounds, using fluorophore-labeled platinum complexes and digital fluorescence microscopy. J Biol Inorg Chem 5(5):655–665

    Article  CAS  PubMed  Google Scholar 

  18. Kalayda GV, Wagner CH, Buss I, Reedijk J, Jaehde U (2008) Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer 8:175

    Article  PubMed  PubMed Central  Google Scholar 

  19. Safaei R, Katano K, Larson BJ, Samimi G, Holzer AK, Naerdemann W, Tomioka M, Goodman M, Howell SB (2005) Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells. Clin Cancer Res 11(2 Pt 1):756–767

    Article  CAS  PubMed  Google Scholar 

  20. Kalayda GV, Wagner CH, Jaehde U (2012) Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J Inorg Biochem 116:1–10

    Article  CAS  PubMed  Google Scholar 

  21. Kotz S, Kullmann M, Crone B, Kalayda GV, Jaehde U, Metzger S (2015) Combination of two-dimensional gel electrophoresis and a fluorescent carboxyfluorescein-diacetate-labeled cisplatin analogue allows the identification of intracellular cisplatin-protein adducts. Electrophoresis 36(21–22):2811–2819

    Article  CAS  PubMed  Google Scholar 

  22. Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G (2015) Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF. Electrophoresis 36(4):509–517

    Article  CAS  PubMed  Google Scholar 

  23. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129(27):8438–8439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamelers IH, Staffhorst RW, Voortman J, de Kruijff B, Reedijk J, van Bergen en Henegouwen PM, de Kroon AI (2009) High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis. Clin Cancer Res 15(4):1259–1268

    Article  CAS  PubMed  Google Scholar 

  25. Kalayda GV, Zhang G, Abraham T, Tanke HJ, Reedijk J (2005) Application of fluorescence microscopy for investigation of cellular distribution of dinuclear platinum anticancer drugs. J Med Chem 48(16):5191–5202

    Article  CAS  PubMed  Google Scholar 

  26. Gestin JF, Benoist E, Loussouarn A, Mishra AK, Faivre-Chauvet A, Chatal JF (1997) Synthesis of a bifunctional chelating agent, (1S*,2S*4R*)-4-aminocyclohexyl-1,2-diamino-N, N, N’, N’-tetraacetic acid, and general method of linker introduction. New J Chem 21(9):1021–1026

    CAS  Google Scholar 

  27. Loussouarn A, Duflos M, Benoist E, Chatal JF, Le Baut G, Gestin JF (1998) Synthesis of new bifunctional chelating agents: (1R*,2R*,4S*)-4-isothiocyanatocyclohexane-1,2-diamine-N, N, N ‘, N ‘-tetrakismethanephosphonic acid (4-ICMP) and (1R*,2R*,4S*)-4-isothiocyanatocyclohexane-1,2-diamine-N, N, N’, N’-tetrakisethanephosphonic acid (4-ICEP). J Chem Soc Perkin Trans 1(2):237–241

    Article  Google Scholar 

  28. Brown HC, Kurek JT (1969) Solvomercuration-demercuration of representative olefins in presence of acetonitrile. A convenient procedure for synthesis of amines. J Am Chem Soc 91(20):5647–5649

    Article  CAS  Google Scholar 

  29. Abramkin SA, Jungwirth U, Valiahdi SM, Dworak C, Habala L, Meelich K, Berger W, Jakupec MA, Hartinger CG, Nazarov AA, Galanski M, Keppler BK (2010) {(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): a novel enantiomerically pure oxaliplatin derivative showing improved anticancer activity in vivo. J Med Chem 53(20):7356–7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalayda GV, Jansen BA, Molenaar C, Wielaard P, Tanke HJ, Reedijk J (2004) Dinuclear platinum complexes with N, N’-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part II. Cellular processing in A2780 cisplatin-resistant human ovarian carcinoma cells: new insights into the mechanism of resistance. J Biol Inorg Chem 9(4):414–422

    Article  CAS  PubMed  Google Scholar 

  31. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48(3):589–601

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (JA 817/4-1). The authors are grateful to Prof. Dr. Ulrich Jaehde for helpful discussions and to Prof. Dr. Christa E. Müller for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna V. Kalayda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalayda, G.V., Kullmann, M., Galanski, M. et al. A fluorescent oxaliplatin derivative for investigation of oxaliplatin resistance using imaging techniques. J Biol Inorg Chem 22, 1295–1304 (2017). https://doi.org/10.1007/s00775-017-1502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1502-z

Keywords

Navigation