Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe

Original Paper

Abstract

An infrared spectroelectrochemical study of Trametes hirsuta laccase and Magnaporthe oryzae bilirubin oxidase has been performed using azide, an inhibitor of multicopper oxidases, as an active infrared probe incorporated into the T2/T3 copper cluster of the enzymes. The redox potential-controlled measurements indicate that N3 stretching IR bands of azide ion bound to the T2/T3 cluster are only detected for the oxidized enzymes, confirming that azide only binds to Cu2+. Moreover, the process of binding/dissociation of azide ion is shown to be reversible. The interaction of halide anions, which also inhibit multicopper oxidases, with the active site of the enzymes was studied by measuring the changes in the azide FTIR bands. Enzymes inhibited by azide respond differently upon addition of fluoride or chloride ions to the sample solution inhibited by azide. Fluoride ions compete with azide for binding at one of the T2/T3 Cu ions, whereas competition from chloride ions is much less evident.

Keywords

Multicopper oxidase Infrared Halide inhibition Spectroelectrochemistry 

Supplementary material

775_2017_1494_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1327 kb)

References

  1. 1.
    Quintanar L, Yoon J, Aznar CP, Palmer AE, Andersson KK, Britt RD, Solomon EI (2005) J Am Chem Soc 127:13832–13845CrossRefPubMedGoogle Scholar
  2. 2.
    Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, Solomon EI (2007) Acc Chem Res 40:445–452CrossRefPubMedGoogle Scholar
  3. 3.
    Baldrian P (2006) FEMS Microbiol Rev 30:215–242CrossRefPubMedGoogle Scholar
  4. 4.
    Mano N (2012) Appl Microbiol Biotechnol 96:301–307CrossRefPubMedGoogle Scholar
  5. 5.
    Cole JL, Clark PA, Solomon EI (1990) J Am Chem Soc 112:9534–9548CrossRefGoogle Scholar
  6. 6.
    Peyratout CS, Severns JC, Holm SR, McMillin DR (1994) Arch Biochem Biophys 314:405–411CrossRefPubMedGoogle Scholar
  7. 7.
    Sakurai T, Takahasi J, Huang HW (1996) Chem Lett 25:651–652CrossRefGoogle Scholar
  8. 8.
    Hirota S, Matsumoto H, Huang HW, Sakurai T, Kitagawa T, Yamauchi O (1998) Biochem Biophys Res Commun 243:435–437CrossRefPubMedGoogle Scholar
  9. 9.
    Naki A, Varfolomeev SD (1980) FEBS Lett 113:157–160CrossRefGoogle Scholar
  10. 10.
    Naki A, Varfolomeev SD (1981) Biochemistry (Moscow) 46:1344–1350Google Scholar
  11. 11.
    Xu F (1996) Biochemistry 35:7608–7614CrossRefPubMedGoogle Scholar
  12. 12.
    Champagne PP, Nesheim ME, Ramsay JA (2013) Appl Microbiol Biotechnol 97:6263–6269CrossRefPubMedGoogle Scholar
  13. 13.
    Falk M, Alcalde M, Bartlett PN, De Lacey AL, Gorton L, Gutierrez-Sanchez C, Haddad R, Kilburn J, Leech D, Ludwig R, Magner E, Mate DM, O’Conghaile P, Ortiz R, Pita M, Poller S, Ruzgas T, Salaj-Kosla U, Schuhmann W, Sebelius F, Shao M, Stoica L, Sygmund C, Tilly J, Toscano MD, Vivekananthan J, Wright E, Shleev S (2014) PLoS One 9:e109104CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Y, Dong S (2008) Electroanalysis 20:827–832CrossRefGoogle Scholar
  15. 15.
    Enaud E, Trovaslet M, Naveau F, Decristoforo A, Bizet S, Vanhulle S, Jolivalt C (2011) Enzyme Microb Technol 49:517–525CrossRefPubMedGoogle Scholar
  16. 16.
    Malkin R, Malmström RG, Vänngård T (1968) FEBS Lett 1:50–54CrossRefPubMedGoogle Scholar
  17. 17.
    Vaz-Domínguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernández VM, De Lacey AL (2008) Biosens Bioelectron 24:531–537CrossRefPubMedGoogle Scholar
  18. 18.
    Beyl Y, Guschin DA, Shleev S, Schuhmann W (2011) Electrochem Commun 13:474–476CrossRefGoogle Scholar
  19. 19.
    Salaj-Kosla U, Pöller S, Schuhmann W, Shleev S, Magner E (2013) Bioelectrochemistry 91:15–20CrossRefPubMedGoogle Scholar
  20. 20.
    Tominaga M, Sasaki A, Togami M (2016) Electrochemistry 84:315–318CrossRefGoogle Scholar
  21. 21.
    Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J (2008) J Struct Biol 162:29–39CrossRefPubMedGoogle Scholar
  22. 22.
    Wharton CW (1986) Biochem J 233:26–36CrossRefGoogle Scholar
  23. 23.
    Gutiérrez-Sanz O, Rüdiger O, De Lacey AL (2014) In: Fontecilla-Camps JC, Nicolet Y (eds) Metalloproteins: methods and protocols. Methods in Molecular Biology, 1st edn. Springer, New YorkGoogle Scholar
  24. 24.
    Shleev SV, Morozova OV, Nikitina OV, Gorshina ES, Rusinova TV, Serezhenkov VA, Burbaev DS, Gazaryan IG, Yaropolov AI (2004) Biochimie 86:693–703CrossRefPubMedGoogle Scholar
  25. 25.
    Durand F, Gounel S, Kjaergaard CH, Solomon EI, Mano N (2012) Appl Microbiol Biotechnol 96:1489–1498CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Moss D, Nabedryk E, Breton J, Mantele W (1990) Eur J Biochem 187:565–572CrossRefPubMedGoogle Scholar
  27. 27.
    Fabbrini M, Galli C, Gentili P (2002) J Mol Catal B Enzym 16:231–240CrossRefGoogle Scholar
  28. 28.
    Jovanovic SV, Tosic M, Simic MG (1991) J Phys Chem 95:10824–10827CrossRefGoogle Scholar
  29. 29.
    Kulys J, Vidziunaite R (2005) J Mol Catal B Enzyme 37:79–83CrossRefGoogle Scholar
  30. 30.
    Christenson A, Shleev S, Mano N, Heller A, Gorton L (2006) Biochim Biophys Acta 1757:1634–1641CrossRefPubMedGoogle Scholar
  31. 31.
    Tsujimura S, Kuriyama A, Fujieda N, Kano K, Ikeda T (2005) Anal Biochem 337:325–331CrossRefPubMedGoogle Scholar
  32. 32.
    Reinhammar B (1972) Biochim Biophys Acta 275:245–259CrossRefPubMedGoogle Scholar
  33. 33.
    Sorrell TN, O’Connor CJ, Anderson OP, Reibenspies JH (1985) J Am Chem Soc 107:4199–4206CrossRefGoogle Scholar
  34. 34.
    Karlin KD, Cohen BI, Hayes JC, Farooq A, Zubieta J (1987) Inorg Chem 26:147–153CrossRefGoogle Scholar
  35. 35.
    Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L, Ruzgas T (2005) Biochem J 385:745–754CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cole JL, Avigliano L, Morpurgo L, Solomon EI (1991) J Am Chem Soc 113:9080–9089CrossRefGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  1. 1.Instituto de Catálisis y Petroleoquímica, CSICMadridSpain
  2. 2.Centre de Recherche Paul PascalUniversité de Bordeaux, UPR 8641, CNRSPessacFrance
  3. 3.Biomedical Sciences, Faculty of Health and SocietyMalmo UniversityMalmöSweden

Personalised recommendations