Anticancer activity of novel amino acid derivative of palladium complex with phendione ligand against of human colon cancer cell line

Original Paper

Abstract

The aim of this work is the identification of the structural effect of amino acid–Pd complex on DNA as an intracellular target which was studied using various spectroscopic techniques such as fluorescence, UV–visible and circular dichroism in combination with a molecular docking study. Hence, a novel water-soluble palladium complex, [Pd(phendione)(isopentylglycine)]NO3, has been synthesized and characterized by spectroscopic method. The anticancer activity of complex was investigated against human colon cancer cell line of HCT116 after 24 h of incubation using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In addition, this complex was interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The fluorescence data indicate that Pd complex is intercalated in DNA. These results were confirmed by circular dichroism spectra. The molecular docking results indicate that docking may be an appropriate method for the prediction and confirmation of experimental results. Complementary molecular docking results may be useful for the determination of the binding mechanism of DNA in pharmaceutical and biophysical studies providing new insight into the novel pharmacology and new solutions in the formulation of advanced oral drug delivery systems.

Graphical Abstract

Docking and spectroscopic studies show that new water-soluble Pd complex has anticancer activity and it can bind to DNA via intercalation and groove binding.

Keywords

Anticancer palladium complex Human colon cancer Phendione DNA binding Amino acid derivative Molecular docking 

References

  1. 1.
    Kaim W, Schwederski B (1996) Bioinorganic chemistry: inorganic elements of life, vol 39. Wiley, London, p 262Google Scholar
  2. 2….
    Xiao-Ming C, Bao-Hui Y, Xiao CH, Zhi-Tao XJ (1996) Chem Soc Dalton Trans, p 3465Google Scholar
  3. 3.
    Huang R, Wallqvist A, Covell G (2005) Biochem Pharmacol 69:1009–1039CrossRefPubMedGoogle Scholar
  4. 4.
    Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466CrossRefPubMedGoogle Scholar
  5. 5….
    Sigel H (1980) Metal ions in biological systems, vol 11. Marcel Dekker, NY, pp 1–196Google Scholar
  6. 6.
    Mylonas S, Valavanidis A, Voukouvalidis V (1981) Inorg Chim Acta 55:125–128CrossRefGoogle Scholar
  7. 7.
    Abu-Surrah AS, Al-Allaf TAK, Rashan LJ, Klinga M, Leskela M (2002) Eur J Med Chem 37:919CrossRefPubMedGoogle Scholar
  8. 8.
    Erkkila KE, Odem DT, Barton JK (1999) Chem Rev 99:2777–2796CrossRefPubMedGoogle Scholar
  9. 9.
    Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215–224CrossRefPubMedGoogle Scholar
  10. 10.
    Smith JA, George MW, Kelly JM (2011) Coord Chem Rev 255:2666CrossRefGoogle Scholar
  11. 11.
    Kaplanisa M, Stamatakisb G, Papakonstantinoub VD, Paravatou-Petsotasc M, Demopoulosb CA, Mitsopouloua CA (2014) J Inorg Biochem 135:1–9CrossRefGoogle Scholar
  12. 12.
    Narla RK, Chen CL, Dong Y, Uckun FM (2001) Clin Cancer Res 7:2124–2133PubMedGoogle Scholar
  13. 13.
    Narla RK, Dong Y, Klis D, Uckun FM (2001) Clin Cancer Res 7:1094PubMedGoogle Scholar
  14. 14.
    Tardito S, Marchio L (2009) Curr Med Chem 16:1325–1348CrossRefPubMedGoogle Scholar
  15. 15.
    Ruiz-Azuara L, Bravo-Gomez ME (2010) Curr Med Chem 17:3606–3615CrossRefPubMedGoogle Scholar
  16. 16.
    Deegan C, McCann M, Devereux M, Coyle B, Egan DA (2007) Cancer Lett 247:224–233CrossRefPubMedGoogle Scholar
  17. 17.
    Roy S, Hagen KD, Maheswari PU, Lutz M, Spek AL, Reedijk R, van Wezel GP (2008) Chem Med Chem 3:1427–1434CrossRefPubMedGoogle Scholar
  18. 18.
    Igdaloff D, Santi DV, Eckert TS, Bruice TC (1983) Biochem Pharmacol 32:172–174CrossRefPubMedGoogle Scholar
  19. 19.
    Heffeter P, Jakupec MA, Korner W, Wild S, von Keyserlingk NG, Elbling L, Zorbas H, Korynevska A, Knasmuller S, Sutterluty H, Micksche M, Keppler BK, Berger W (2006) Biochem Pharmacol 71:426–440CrossRefPubMedGoogle Scholar
  20. 20…….
    Randford AD, Sadler PJ (1993) J Chem Soc Dalton Trans, pp 3393–3399Google Scholar
  21. 21.
    Margiotta N, Bergamo A, Sava G, Padovano G, de Clercq E, Natile G (2004) J Inorg Biochem 98:1385–1390CrossRefPubMedGoogle Scholar
  22. 22.
    Papadia P, Margiotta N, Bergamo A, Sava G, Natile G (2005) J Med Chem 48:3364–3371CrossRefPubMedGoogle Scholar
  23. 23.
    Macleod RA (1952) J Biol Chem 197:751–761PubMedGoogle Scholar
  24. 24.
    Husseini R, Stretton RJ (1980) Microbios 29:109–125PubMedGoogle Scholar
  25. 25.
    Husseini R, Stretton RJ (1981) Microbios 30:7–18PubMedGoogle Scholar
  26. 26.
    Husseini R, Stretton RJ (1981) Microbios Lett 16:85–94Google Scholar
  27. 27.
    McCann M, Geraghty M, Devereux M, Shea DO, Mason J, Sullivan LO (2000) Met-Based Drugs 7:85–193CrossRefGoogle Scholar
  28. 28.
    Coyle B, Kavanagh K, McCann M, Devereux M, Geraghty M (2003) Biometals 16:321–329CrossRefPubMedGoogle Scholar
  29. 29.
    Rowan R, Moran C, McCann M, Kavanagh K (2009) Biometals 22:461CrossRefPubMedGoogle Scholar
  30. 30.
    Goss CA, Abruna HD (1985) Inorg Chem 24:4263CrossRefGoogle Scholar
  31. 31.
    Deegan C, Coyle B, McCann M, Devereux M, Egan D (2006) Chem Biol Interact 164:115–125CrossRefPubMedGoogle Scholar
  32. 32.
    Devereux M, Shea DO, Kellet A, McCann M, Walsh M, Egan D, Deegan C, Kedziora K, Rosair G, Muller-Bunz H (2007) J Inorg Biochem 101:881–892CrossRefPubMedGoogle Scholar
  33. 33.
    McCann M, Santos ALS, daSilva BA, Romanos MTV, Pyrrho AS, Devereux M, Kavanagh K, Fichtner I, Kellett A (2012) Toxicol Res 1:47CrossRefGoogle Scholar
  34. 34.
    Ghosh S, Barve AC, Kumbhar AA, Kumbhar AS, Puranik VG, Datar PA, Sonawane UB, Joshi RR (2006) J Inorg Biochem 100:331–343CrossRefPubMedGoogle Scholar
  35. 35.
    Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimao I (1992) Bull Chem Soc Jpn 65:1006–1011CrossRefGoogle Scholar
  36. 36.
    Paw W, Eisenberg R (1997) Inorg Chem 36:2287–2293CrossRefPubMedGoogle Scholar
  37. 37.
    Kantoury M, Eslami-Moghadam M, Tarlani A, Divsalar A (2016) Chem Biol Drug 88:76–87CrossRefGoogle Scholar
  38. 38.
    Abolhosseini Sh A, Mahjoub AR, Eslami-Moghadam v, Fakhri H (2014) J Mol Struct 1076:568–575CrossRefGoogle Scholar
  39. 39.
    Mitsopoulou CA, Dagas CE, Makedonas C (2008) Inorg Chim Acta 361:1973–1982CrossRefGoogle Scholar
  40. 40.
    Howe-Grant M, Wu KC, Bauer WR, Lippard SJ (1976) Biochemistry 15:4339–4346CrossRefPubMedGoogle Scholar
  41. 41.
    Greene RF, Pace CN (1974) J Biol Chem 249:5388–5393Google Scholar
  42. 42.
    Arjmand F, Jamsheera A (2011) Spectrochim Acta Part A Mol Biomol Spectrosc 78:45–51CrossRefGoogle Scholar
  43. 43.
    Ajloo D, Moghadam ME, Ghadimi K, Ghadamgahi M, Saboury AA, Divsalar A, SheikhMohammadi M, Yousefi K (2015) Inorg Chim Acta 430:144–160CrossRefGoogle Scholar
  44. 44.
    Lepecq JB, Paoletti C (1967) J Mol Biol 27:87CrossRefPubMedGoogle Scholar
  45. 45.
    Lakowicz JR, Weber G (1973) Biochemistry 12:4171–4179CrossRefPubMedGoogle Scholar
  46. 46.
    Sun Y, Bi S, Song D, Qiao C, Mu D, Zhang H (2008) Sens Actuators B 129:799CrossRefGoogle Scholar
  47. 47.
    Robles-Escajeda E, Martínez A, Varela-Ramirez A, Sánchez-Delgado RA, Aguilera RJ (2013) Cell Biol Toxicol 29(6):431–443CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Nucl Acids Res 37:1713–1725CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Eslami-Moghadam M, Saidifar M, Divsalar A, Mansouri-Torshizi H, Saboury AA, Farhangian H, Ghadamgahi M (2016) J Biomol Struct Dyn 34:203–219Google Scholar
  50. 50.
    Tabassum S, Asim A, Khan RA, Arjmand F, Rajakumar D, Balaji P, Akbarsha MA (2015) RSC Adv. 5:47439–47450CrossRefGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  1. 1.Chemistry and Chemical Engineering Research Center of IranTehranIran
  2. 2.Department of Cell and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran

Personalised recommendations