Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging

  • Kui Wu
  • Feifei Jia
  • Wei Zheng
  • Qun Luo
  • Yao Zhao
  • Fuyi WangEmail author
Part of the following topical collections:
  1. AsBIC8: 8th Asian Biological Inorganic Chemistry Special Issue


Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF–SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry.

Graphical abstract

Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.


Secondary ion mass spectrometry Metallodrug Visualization Single cell Mass spectrometry imaging 



We thank NSFC (Grant Nos: 21127901, 21135006, 21505141, 21575145, 91543101 and 21621062), and the 973 Program of MOST (2013CB531805) for support.


  1. 1.
    Orvig C, Abrams MJ (1999) Medicinal inorganic chemistry: introduction. Chem Rev 99:2201–2203CrossRefPubMedGoogle Scholar
  2. 2.
    Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114:4540–4563CrossRefPubMedGoogle Scholar
  3. 3.
    Guo ZJ, Sadler PJ (1999) Metals in medicine. Angew Chem Int Ed 38:1513–1531CrossRefGoogle Scholar
  4. 4.
    Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699CrossRefPubMedGoogle Scholar
  5. 5.
    Alderden RA, Hall MD, Hambley TW (2006) The discovery and development of cisplatin. J Chem Educ 83:728–734CrossRefGoogle Scholar
  6. 6.
    Jung YW, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407CrossRefPubMedGoogle Scholar
  7. 7.
    Messori L, Merlino A (2016) Cisplatin binding to proteins: a structural perspective. Coord Chem Rev 315:67–89CrossRefGoogle Scholar
  8. 8.
    Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320CrossRefPubMedGoogle Scholar
  9. 9.
    Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342:1201–1211CrossRefGoogle Scholar
  10. 10.
    Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2013) Chemical analysis of single cells. Anal Chem 85:522–542CrossRefPubMedGoogle Scholar
  11. 11.
    Dollery CT (2013) Intracellular drug concentrations. Clin Pharmacol Ther 93:263–266CrossRefPubMedGoogle Scholar
  12. 12.
    Legin AA, Schintlmeister A, Jakupec MA, Galanski M, Lichtscheidl I, Wagner M, Keppler BK (2014) NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem Sci 5:3135–3143CrossRefGoogle Scholar
  13. 13.
    Bodzon-Kulakowska A, Suder P (2016) Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom Rev 35:147–169CrossRefPubMedGoogle Scholar
  14. 14.
    Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV (2005) Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov Today 10:823–837CrossRefPubMedGoogle Scholar
  15. 15.
    Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74CrossRefPubMedGoogle Scholar
  16. 16.
    Wedlock LE, Berners-Price SJ (2011) Recent advances in mapping the sub-cellular distribution of metal-based anticancer drugs. Aust J Chem 64:692–704Google Scholar
  17. 17.
    Sodhi RNS (2004) Time-of-flight secondary ion mass spectrometry (TOF-SIMS): versatility in chemical and imaging surface analysis. Analyst 129:483–487CrossRefPubMedGoogle Scholar
  18. 18.
    Van Vaeck L, Adriaens A, Gijbels R (1999) Static secondary ion mass spectrometry: (S-SIMS) Part 1. Methodology and structural interpretation. Mass Spectrom Rev 18:1–47CrossRefGoogle Scholar
  19. 19.
    Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC (2003) A C-60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem 75:1754–1764CrossRefPubMedGoogle Scholar
  20. 20.
    Wong SCC, Hill R, Blenkinsopp P, Lockyer NP, Weibel DE, Vickerman JC (2003) Development of a C-60(+) ion gun for static SIMS and chemical imaging. Appl Surf Sci 203:219–222CrossRefGoogle Scholar
  21. 21.
    Jiang HB, Kilburn MR, Decelle J, Musat N (2016) NanoSIMS chemical imaging combined with correlative microscopy for biological sample analysis. Curr Opin Biotech 41:130–135CrossRefPubMedGoogle Scholar
  22. 22.
    McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643CrossRefPubMedGoogle Scholar
  23. 23.
    Fletcher JS, Vickerman JC (2013) Secondary ion mass spectrometry: characterizing complex samples in two and three dimensions. Anal Chem 85:610–639CrossRefPubMedGoogle Scholar
  24. 24.
    Fletcher JS (2009) Cellular imaging with secondary ion mass spectrometry. Analyst 134:2204–2215CrossRefPubMedGoogle Scholar
  25. 25.
    Wang ZY, Zhang YY, Liu BW, Wu K, Thevuthasan S, Baer DR, Zhu ZH, Yu XY, Wang FY (2017) In situ mass spectrometric monitoring of the dynamic electrochemical process at the electrode-electrolyte interface: a SIMS approach. Anal Chem 89:960–965CrossRefPubMedGoogle Scholar
  26. 26.
    Chandra S, Bernius MT, Morrison GH (1986) Intracellular-localization of diffusible elements in frozen-hydrated biological specimens with ion microscopy. Anal Chem 58:493–496CrossRefPubMedGoogle Scholar
  27. 27.
    Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cy 3:45–60CrossRefGoogle Scholar
  28. 28.
    Chandra S, Morrison GH, Wolcott CC (1986) Imaging intracellular elemental distribution and ion fluxes in cultured-cells using ion microscopy—a freeze-fracture methodology. J Microsc 144:15–37CrossRefPubMedGoogle Scholar
  29. 29.
    Chandra S, Morrison GH (1992) Sample preparation of animal-tissues and cell-cultures for secondary ion mass-spectrometry (SIMS) microscopy. Biol Cell 74:31–42CrossRefPubMedGoogle Scholar
  30. 30.
    Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228–238CrossRefPubMedGoogle Scholar
  31. 31.
    Cannon DM, Pacholski ML, Winograd N, Ewing AG (2000) Molecule specific imaging of freeze-fractured, frozen-hydrated model membrane systems using mass spectrometry. J Am Chem Soc 122:603–610CrossRefGoogle Scholar
  32. 32.
    Sjovall P, Lausmaa J, Nygren H, Carlsson L, Malmberg P (2003) Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem 75:3429–3434CrossRefPubMedGoogle Scholar
  33. 33.
    Mai FD, Chen BJ, Wu LC, Li FY, Chen WK (2006) Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Appl Surf Sci 252:6809–6812CrossRefGoogle Scholar
  34. 34.
    Lanekoff I, Phan NTN, Van Bell CT, Winograd N, Sjovall P, Ewing AG (2013) Mass spectrometry imaging of freeze-dried membrane phospholipids of dividing Tetrahymena pyriformis. Surf Interface Anal 45:211–214CrossRefPubMedGoogle Scholar
  35. 35.
    Piwowar AM, Keskin S, Delgado MO, Shen K, Hue JJ, Lanekoff I, Ewing AG, Winograd N (2013) C60-ToF SIMS imaging of frozen hydrated HeLa cells. Surf Interface Anal 45:302–304CrossRefPubMedGoogle Scholar
  36. 36.
    Szakal C, Narayan K, Fu J, Lefman J, Subramaniam S (2011) Compositional mapping of the surface and interior of mammalian cells at submicrometer resolution. Anal Chem 83:1207–1213CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG (2007) Secondary ion MS imaging to relatively quantify cholesterol in the membranes of individual cells from differentially treated populations. Anal Chem 79:3554–3560CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Borner K, Malmberg P, Mansson JE, Nygren H (2007) Molecular imaging of lipids in cells and tissues. Int J Mass Spectrom 260:128–136CrossRefGoogle Scholar
  39. 39.
    Sparks JP, Chandra S, Derry LA, Parthasarathy MV, Daugherty CS, Griffin R (2011) Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: evidence for differential and active transport. Biogeochemistry 104:237–249CrossRefGoogle Scholar
  40. 40.
    Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteom 75:5036–5051CrossRefGoogle Scholar
  41. 41.
    Chandra S (2008) Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution. Appl Surf Sci 255:1273–1284CrossRefGoogle Scholar
  42. 42.
    Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566CrossRefPubMedGoogle Scholar
  43. 43.
    Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Malm J, Giannaras D, Riehle MO, Gadegaard N, Sjovall P (2009) Fixation and drying protocols for the preparation of cell samples for time-of-flight secondary ion mass spectrometry analysis. Anal Chem 81:7197–7205CrossRefPubMedGoogle Scholar
  45. 45.
    Li T, Wu TD, Mazeas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1:354–360PubMedGoogle Scholar
  47. 47.
    Tucker KR, Li Z, Rubakhin SS, Sweedler JV (2012) Secondary ion mass spectrometry imaging of molecular distributions in cultured neurons and their processes: comparative analysis of sample preparation. J Am Soc Mass Spectrom 23:1931–1938CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ghosal S, Fallon SJ, Leighton TJ, Wheeler KE, Kristo MJ, Nutcheon ID, Weber PK (2008) Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. Anal Chem 80:5986–5992CrossRefPubMedGoogle Scholar
  49. 49.
    Robinson MA, Graham DJ, Castner DG (2012) ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts. Anal Chem 84:4880–4885CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nilsson A, Goodwin RJA, Shariatgorji M, Vallianatou T, Webborn PJH, Andren PE (2015) Mass spectrometry imaging in drug development. Anal Chem 87:1437–1455CrossRefPubMedGoogle Scholar
  51. 51.
    Desbenoit N, Schmitz-Afonso I, Baudouin C, Laprevote O, Touboul D, Brignole-Baudouin F, Brunelle A (2013) Localisation and quantification of benzalkonium chloride in eye tissue by TOF-SIMS imaging and liquid chromatography mass spectrometry. Anal Bioanal Chem 405:4039–4049CrossRefPubMedGoogle Scholar
  52. 52.
    Pajander J, Haugshoj KB, Bjorneboe K, Wahlberg P, Rantanen J (2013) Foreign matter identification from solid dosage forms. J Pharmaceut Biomed 80:116–125CrossRefGoogle Scholar
  53. 53.
    Sole-Domenech S, Sjovall P, Vukojevic V, Fernando R, Codita A, Salve S, Bogdanovic N, Mohammed AH, Hammarstrom P, Nilsson KPR, LaFerla FM, Jacob S, Berggren PO, Gimenez-Llort L, Schalling M, Terenius L, Johansson B (2013) Localization of cholesterol, amyloid and glia in Alzheimer’s disease transgenic mouse brain tissue using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and immunofluorescence imaging. Acta Neuropathol 125:145–157CrossRefPubMedGoogle Scholar
  54. 54.
    Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu HJ, Nazarov AA, Yeo CHF, Ang WH, Droge P, Rothlisberger U, Dyson PJ, Davey CA (2014) Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun 5:3462Google Scholar
  55. 55.
    Lorey DR, Morrison GH, Chandra S (2001) Dynamic secondary ion mass spectrometry analysis of boron from boron neutron capture therapy drugs in co-cultures: single-cell imaging of two different cell types within the same ion microscopy field of imaging. Anal Chem 73:3947–3953CrossRefPubMedGoogle Scholar
  56. 56.
    Chandra S, Kabalka GW, Lorey DR, Smith DR, Coderre JA (2002) Imaging of fluorine and boron from fluorinated boronophenylalanine in the same cell at organelle resolution by correlative ion microscopy and confocal laser scanning microscopy. Clin Cancer Res 8:2675–2683PubMedGoogle Scholar
  57. 57.
    Clerc J, Fourre C, Fragu P (1997) SIMS microscopy: methodology, problems and perspectives in mapping drugs and nuclear medicine compounds. Cell Biol Int 21:619–633CrossRefPubMedGoogle Scholar
  58. 58.
    Fragu P, Kahn E (1997) Secondary ion mass spectrometry (SIMS) microscopy: a new tool for pharmacological studies in humans. Microsc Res Tech 36:296–300CrossRefPubMedGoogle Scholar
  59. 59.
    Duane R, Smith SC, Barth Rolf F, Yang Weilian, Joel Darrel D, Coderre JA (2001) Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy: relevance to neutron capture therapy. Cancer Res 61:8179–8187Google Scholar
  60. 60.
    Zha XH, Ausserer WA, Morrison GH (1992) Quantitative imaging of a radiotherapeutic drug, Na2b12h11sh, at subcellular resolution in tissue-cultures using ion microscopy. Cancer Res 52:5219–5222PubMedGoogle Scholar
  61. 61.
    Bennett BD, Mumfordzisk J, Coderre JA, Morrison GH (1994) Subcellular-localization of P-boronophenylalanine-delivered B-10 in the rat 9 l gliosarcoma—cryogenic preparation in vitro and in-vivo. Radiat Res 140:72–78CrossRefPubMedGoogle Scholar
  62. 62.
    Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W, Arlinghaus HF (2004) Quantitative imaging of atomic and molecular species in cancer cultures with TOF-SIMS and Laser-SNMS. Appl Surf Sci 231:428–431CrossRefGoogle Scholar
  63. 63.
    Fragu P, Klijanienko J, Gandia D, Halpern S, Armand JP (1992) Quantitative mapping of 4′-iododeoxyrubicin in metastatic squamous-cell carcinoma by secondary ion mass-spectrometry (SIMS) microscopy. Cancer Res 52:974–977PubMedGoogle Scholar
  64. 64.
    Fragu P, Clerc J, Briancon C, Fourre C, Jeusset J, Halpern S (1994) Recent developments in medical applications of SIMS microscopy. Micron 25:361–370CrossRefPubMedGoogle Scholar
  65. 65.
    Casiraghi O, Lombard MN, Halpern S, Fragu P (1993) Detection on liver-tissue sections of S-phase markers in synchronized cycling rat hepatocytes by sims microscopy. Biol Cell 79:225–229CrossRefPubMedGoogle Scholar
  66. 66.
    Clerc J, Halpern S, Fourre C, Omri F, Briancon C, Jeusset J, Fragu P (1993) Sims microscopy imaging of the intratumor biodistribution of metaiodobenzylguanidine in the human Sk-N-Sh neuroblastoma cell-line xenografted into nude-mice. J Nucl Med 34:1565–1570PubMedGoogle Scholar
  67. 67.
    Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, Alexander MR, Dollery CT (2015) Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem 87:6696–6702CrossRefPubMedGoogle Scholar
  68. 68.
    Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708PubMedGoogle Scholar
  69. 69.
    Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663PubMedGoogle Scholar
  70. 70.
    Liang XJ, Shen DW, Chen KG, Wincovitch SM, Garfield SH, Gottesman MM (2005) Trafficking and localization of platinum complexes in cisplatin-resistant cell lines monitored by fluorescence-labeled platinum. J Cell Physiol 202:635–641CrossRefPubMedGoogle Scholar
  71. 71.
    Chandra S (2010) Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: cisplatin affects calcium stores in renal epithelial cells. Methods Mol Biol 656:113–130CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chandra S (2010) Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: cisplatin affects calcium stores in renal epithelial cells. Humana Press, New YorkGoogle Scholar
  73. 73.
    Usami N, Furusawa Y, Kobayashi K, Lacombe S, Reynaud-Angelin A, Sage E, Wu TD, Croisy A, Guerquin-Kern JL, Le Sech C (2008) Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol 84:603–611CrossRefPubMedGoogle Scholar
  74. 74.
    Gulin AA, Pavlyukov MS, Gularyan SK, Nadtochenko VA (2015) Spatial distribution of Pt + ions in cisplatin-treated glioblastoma cells by time-of-flight secondary ion mass spectrometry. Biochemistry (Moscow) 32:202–210Google Scholar
  75. 75.
    Wedlock LE, Kilburn MR, Liu R, Shaw JA, Berners-Price SJ, Farrell NP (2013) NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chem Commun 49:6944–6946CrossRefGoogle Scholar
  76. 76.
    Peterson EJ, Menon VR, Gatti L, Kipping R, Dewasinghe D, Perego P, Povirk LF, Farrell NP (2015) Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharmaceut 12:287–297CrossRefGoogle Scholar
  77. 77.
    Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171CrossRefPubMedGoogle Scholar
  78. 78.
    Weiss A, Berndsen RH, Dubois M, Muller C, Schibli R, Griffioen AW, Dyson PJ, Nowak-Sliwinska P (2014) In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(eta(6)-p-cymene)-Cl-2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem Sci 5:4742–4748CrossRefGoogle Scholar
  79. 79.
    Lee RFS, Escrig S, Croisier M, Clerc-Rosset S, Knott GW, Meibom A, Davey CA, Johnsson K, Dyson PJ (2015) NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem Commun 51:16486–16489CrossRefGoogle Scholar
  80. 80.
    Du J, Zhang EL, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang ZY, Luo Q, Wu K, Wang FY (2015) Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells. Metallomics 7:1573–1583CrossRefPubMedGoogle Scholar
  81. 81.
    Du J, Kang Y, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang ZY, Wang YY, Luo Q, Wu K, Wang FY (2016) Synthesis, characterization, and in vitro antitumor activity of ruthenium(II) polypyridyl complexes tethering EGFR-inhibiting 4-anilinoquinazolines. Inorg Chem 55:4595–4605CrossRefPubMedGoogle Scholar
  82. 82.
    Liu S, Zheng W, Wu K, Lin Y, Jia F, Zhang Y, Wang Z, Luo Q, Zhao Y, Wang F (2017) Correlated mass spectrometry and confocal microscopy imaging verifies the dual-targeting action of an organoruthenium anticancer complex. Chem Commun 53:4136–4139CrossRefGoogle Scholar
  83. 83.
    Wedlock LE, Kilburn MR, Cliff JB, Filgueira L, Saunders M, Berners-Price SJ (2011) Visualising gold inside tumour cells following treatment with an antitumour gold(I) complex. Metallomics 3:917–925CrossRefPubMedGoogle Scholar
  84. 84.
    Chang CC, Chen CN, Liao WL, Lo TY, Lei SL, Mai FD (2013) Observation of the absorption of the In-DTPA-hexa-lactoside (IDHL) and its distribution in vitro by ICP-MS and TOF-SIMS. Surf Interface Anal 45:251–254CrossRefGoogle Scholar
  85. 85.
    Smith DR, Lorey DR, Chandra S (2004) Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent. Appl Surf Sci 231:457–461CrossRefGoogle Scholar
  86. 86.
    Castaing R, Slodzian G (1962) Microanalysis by secondary ionic emission. J Microsc 1:395–410Google Scholar
  87. 87.
    Burns MS (1982) Applications of secondary ion mass-spectrometry (SIMS) in biological research—a review. J Microsc 127:237–258CrossRefPubMedGoogle Scholar
  88. 88.
    Wirtz T, Philipp P, Audinot JN, Dowsett D, Eswara S (2015) High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26:434001Google Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Kui Wu
    • 1
    • 2
    • 3
  • Feifei Jia
    • 1
    • 2
    • 3
  • Wei Zheng
    • 1
    • 2
    • 3
  • Qun Luo
    • 1
    • 2
    • 3
    • 4
  • Yao Zhao
    • 1
    • 2
    • 3
  • Fuyi Wang
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Beijing National Laboratory for Molecular SciencesBeijingPeople’s Republic of China
  2. 2.National Centre for Mass Spectrometry in BeijingBeijingPeople’s Republic of China
  3. 3.CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations