JBIC Journal of Biological Inorganic Chemistry

, Volume 22, Issue 6, pp 819–832 | Cite as

The influence of oxo-bridged binuclear gold(III) complexes on Na/K-ATPase activity: a joint experimental and theoretical approach

  • Aleksandra M. Bondžić
  • Mirjana B. Čolović
  • Goran V. Janjić
  • Božidarka Zarić
  • Sandra Petrović
  • Danijela Z. Krstić
  • Tiziano Marzo
  • Luigi Messori
  • Vesna M. Vasić
Original Paper


The in vitro effects of oxo-bridged binuclear gold(III) complexes, i.e., [(bipy2Me)2Au2(μ-O)2][PF6]2 (Auoxo6), Au2[(bipydmb-H)2(μ-O)][PF6] (Au2bipyC) and [Au2(phen2Me)2(μ-O)2](PF6)2 (Au2phen) on Na/K-ATPase, purified from the porcine cerebral cortex, were investigated. All three studied gold complexes inhibited the enzyme activity in a concentration-dependent manner achieving IC50 values in the low micromolar range. Kinetic analysis suggested an uncompetitive mode of inhibition for Auoxo6 and Au2bipyC, and a mixed type one for Au2phen. Docking studies indicated that the inhibitory actions of all tested complexes are related to E2-P enzyme conformation binding to ion channel and intracellular part between N and P sub-domain. In addition, Au2phen was able to inhibit the enzyme by interacting with its extracellular part as well. Toxic effects of the gold(III) complexes were evaluated in vitro by following lactate dehydrogenase activity in rat brain synaptosomes and incidence of micronuclei and cytokinesis-block proliferation index in cultivated human lymphocytes. All investigated complexes turned out to induce cytogenetic damage consisting of a significant decrease in cell proliferation and an increase in micronuclei in a dose-dependent manner. On the other hand, lactate dehydrogenase activity, an indicator of membrane integrity/viability, was not affected by Auoxo6 and Au2bipyC, while Au2phen slightly modified its activity.

Graphical Abstract


Binuclear gold(III) complexes Na/K-ATPase Inhibition Docking studies Cytotoxicity Genotoxicity 



Relative enzyme activity


Adenosine triphosphate


Nicotinamide adenine dinucleotide reduced


Lactate dehydrogenase


Cytokinesis-block proliferation index


Incidence of micronuclei

Supplementary material

775_2017_1460_MOESM1_ESM.pdf (428 kb)
Supplementary material 1 (PDF 428 kb)


  1. 1.
    Glisic BD, Savic ND, Warzajtis B, Djokic L, Ilic-Tomic T, Antic M, Radenkovic S, Nikodinovic-Runic J, Rychlewska U, Djuran MI (2016) Synthesis, structural characterization and biological evaluation of dinuclear gold(iii) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. MedChemComm 7:1356–1366CrossRefGoogle Scholar
  2. 2.
    Asif M (2012) Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr Med Chem 19:2984–2991CrossRefPubMedGoogle Scholar
  3. 3.
    Joule JA, Mills K (2000) Heterocyclic chemistry. Wiley, OxfordGoogle Scholar
  4. 4.
    Messori L, Marcon G (2004) Gold complexes as antitumor agents. Met Ions Biol Syst 42:385–424PubMedGoogle Scholar
  5. 5.
    Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem Biol 7:481–489CrossRefPubMedGoogle Scholar
  6. 6.
    Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279CrossRefPubMedGoogle Scholar
  7. 7.
    Fuertes MA, Castilla J, Alonso C, Prez JM (2003) Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 10:257–266CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, He Q, Sun R, Che CM, Chiu JF (2005) Gold(III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Can Res 65:11553–11564CrossRefGoogle Scholar
  9. 9.
    Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L (2009) Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 253:1692–1707CrossRefGoogle Scholar
  10. 10.
    Petrović V, Čolović M, Krstić D, Vujačić A, Petrović S, Joksić G, Bugarčić Ž, Vasić V (2013) In vitro effects of some gold complexes on Na+/K+-ATPase activity and cell proliferation. J Inorg Biochem 124:35–41CrossRefPubMedGoogle Scholar
  11. 11.
    Petrović V, Petrović S, Joksić G, Savić J, Čolović M, Cinellu MA, Massai L, Messori L, Vasić V (2014) Inhibition of Na+/K+-ATPase and cytotoxicity of a few selected gold(III) complexes. J Inorg Biochem 140:228–235CrossRefPubMedGoogle Scholar
  12. 12.
    Chiara G, Casini A, Messori L (2007) Gold (III) compounds as anticancer drugs. Gold Bull 40:73–81CrossRefGoogle Scholar
  13. 13.
    Castro VM, Söderström M, Carlberg I, Widersten M, Platz A, Mannervik B (1990) Differences among human tumor cell lines in the expression of glutathione transferases and other glutathione-linked enzymes. Carcinogenesis 11:1569–1576CrossRefPubMedGoogle Scholar
  14. 14.
    Rakashanda S, Rana F, Rafiq S, Masood A, Amin S (2012) Role of proteases in cancer: a review. Biotechnol Mol Biol Rev 7:90–101CrossRefGoogle Scholar
  15. 15.
    Mijatovic T, Ingrassia L, Facchini V, Kiss R (2008) Na+/K+-ATPase α subunits as new targets in anticancer therapy. Expert Opin Ther Targets 12:1403–1417CrossRefPubMedGoogle Scholar
  16. 16.
    Lefranc F, Kiss R (2008) The sodium pump α1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 10:198–206CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 19:377–387Google Scholar
  18. 18.
    Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450(7172):1043–1049CrossRefPubMedGoogle Scholar
  19. 19.
    Momić TG, Čolović MB, Lazarević-Pašti TD, Vasić VM (2016) Metal based compounds, modulators of Na, K-ATPase with anticancer activity. In: Chakraborti S, Dhalla NS (eds) Regulation of Membrane Na+-K+ ATPase, advances in biochemistry in health and disease. Springer International Publishing, SwitzerlandGoogle Scholar
  20. 20.
    Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T, Zhou SF (2015) Targeting Na+/K+-translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 42:427–443CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia DG, Castro-Faria-Neto HCd, Silva CId, Souza e Souza KFCD, Gonçalves-de-Albuquerque CF, Silva AR, Amorim LMdFd, Freire AS, Santelli RE, Diniz LP, Gomes FCA, Faria MVDC, Burth P (2015) Na/K-ATPase as a target for anticancer drugs: studies with perillyl alcohol. Mol Cancer 14:105Google Scholar
  22. 22.
    Chen D, Song M, Mohamad O, Ping YS (2014) Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 14:716CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Arcangeli A, Becchetti A (2010) New trends in cancer therapy: targeting ion channels and transporters. Pharmaceuticals 3:1202–1224CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650PubMedGoogle Scholar
  25. 25.
    Yin W, Cheng W, Shen W, Shu L, Zhao J, Zhang J, Hua ZC (2007) Impairment of Na+, K+-ATPase in CD95(APO-1)-induced human T-cell leukemia cell apoptosis mediated by glutathione depletion and generation of hydrogen peroxide. Leukemia 21:1669–1678CrossRefPubMedGoogle Scholar
  26. 26.
    Wang HY, O’Doherty GA (2012) Modulators of Na/K-ATPase: a patent review. Expert Opin Ther Pat 22:587–605CrossRefPubMedGoogle Scholar
  27. 27.
    Alevizopoulos K, Calogeropoulou T, Lang F, Stournaras C (2014) Na+/K+ ATPase inhibitors in cancer. Curr Drug Targets 15:988–1000PubMedGoogle Scholar
  28. 28.
    Huličiak M, Vacek J, Šebela M, Orolinová E, Znaleziona J, Havlíková M, Kubala M (2012) Covalent binding of cisplatin impairs the function of Na+/K+-ATPase by binding to its cytoplasmic part. Biochem Pharmacol 83:1507–1513CrossRefPubMedGoogle Scholar
  29. 29.
    Krinulović K, Bugarčić Ž, Vrvić M, Krstić D, Vasić V (2006) Prevention and recovery of (μ3-diethylentriamino)-chloro-palladium(II)-chloride induced inhibition of Na/K-ATPase by SH containing ligands-l-cysteine and glutathione. Toxicol In Vitro 20:1292–1299CrossRefPubMedGoogle Scholar
  30. 30.
    Marcon G, Carotti S, Coronnello M, Messori L, Mini E, Orioli P, Mazzei T, Cinellu MA, Minghetti G (2002) Gold(III) complexes with bipyridyl ligands: solution chemistry, cytotoxicity, and DNA binding properties. J Med Chem 45:1672–1677CrossRefPubMedGoogle Scholar
  31. 31.
    Casini A, Cinellu MA, Minghetti G, Gabbiani C, Coronnello M, Mini E, Messori L (2006) Structural and solution chemistry, antiproliferative effects, and DNA and protein binding properties of a series of dinuclear gold(III) compounds with bipyridyl ligands. J Med Chem 49:5524–5531CrossRefPubMedGoogle Scholar
  32. 32.
    Cinellu MA, Maiore L, Manassero M, Casini A, Arca M, Fiebig HH, Kelter G, Michelucci E, Pieraccini G, Gabbiani C, Messori L (2010) [Au2(phen(2Me))2(mu-O)2](PF6)2, a novel dinuclear gold(III) complex showing excellent antiproliferative properties. ACS Med Chem Lett 1:336–339CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gabbiani C, Casini A, Messori L, Guerri A, Cinellu MA, Minghetti G, Corsini M, Rosani C, Zanello P, Arca M (2008) Structural characterization, solution studies, and DFT calculations on a series of binuclear gold(III) oxo complexes: relationships to biological properties. Inorg Chem 47:2368–2379CrossRefPubMedGoogle Scholar
  34. 34.
    Jurišic V, Bumbaširevic V (2008) In vitro assays for cell death determination. Arch Oncol 16:49–54CrossRefGoogle Scholar
  35. 35.
    Pourabdolhossein F, Ghasemi A, Shahroukhi A, Sherafat MA, Khoshbaten A, Asgari A (2009) In vitro assessment of paraoxon effects on GABA uptake in rat hippocampal synaptosomes. Toxicol In Vitro 23:868–873CrossRefPubMedGoogle Scholar
  36. 36.
    Messori L, Scaletti F, Massai L, Cinellu MA, Gabbiani C, Vergara A, Merlino A (2013) The mode of action of anticancer gold-based drugs: a structural perspective. Chem Comm 49:10100–10102CrossRefPubMedGoogle Scholar
  37. 37.
    Bondžić AM, Janjić G, Dramićanin MD, Messori L, Massai L, Parac-Vogt T, Vasić V (2017) Na/K-ATPase as a target for anticancer metal based drugs: insights into the molecular interactions with selected gold(III) complexes. Metallomics. doi:10.1039/C7MT00017K PubMedGoogle Scholar
  38. 38.
    Ahmed Z, Deyama Y, Yoshimura Y, Suzuki K (2009) Cisplatin sensitivity of oral squamous carcinoma cells is regulated by Na+, K+-ATPase activity rather than copper-transporting P-type ATPases, ATP7A and ATP7B. Cancer Chemother Pharmacol 63:643–650CrossRefPubMedGoogle Scholar
  39. 39.
    Huliciak M, Reinhard L, Laursen M, Fedosova N, Nissen P, Kubala M (2014) Crystals of Na+/K+-ATPase with bound cisplatin. Biochem Pharmacol 92:494–498CrossRefPubMedGoogle Scholar
  40. 40.
    Eljack ND, Ma HY, Drucker J, Shen C, Hambley TW, New EJ, Friedrich T, Clarke RJ (2014) Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics 6(11):2126–2133CrossRefPubMedGoogle Scholar
  41. 41.
    Vasić D, Savić J, Bugarčić Z, Krstić D, Tomić N, Čolović M, Petković M, Vasić V (2009) Interaction of the [PtCl2(DMSO)2] complex with L-cysteine. Z Naturforsch C 64:103–108PubMedGoogle Scholar
  42. 42.
    Kitada H, Suzuki K, Yamaoka M, Fukuda H, Kitagava Y (2005) The effects of platinum-containing anti-cancer drugs on Na+, K+-ATPase activity in pig kidney and human renal proximal tubule epithelial cells. J Oral Ther Pharmacol 24:20–29Google Scholar
  43. 43.
    Krinulović KS, Vasić VM (2006) Interaction of some Pd(II) complexes with Na+/K+-ATPase: inhibition, kinetics, prevention and recovery. J Enzyme Inhib Med Chem 21:459–465CrossRefPubMedGoogle Scholar
  44. 44.
    Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J, Weidner J (2004) Mechanism of action assays for enzymes. In: Sittampalam GS, Coussens NP, Brimacombe K et al. (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, BethesdaGoogle Scholar
  45. 45.
    Traven K, Eleftheriadis N, Seršen S, Kljun J, Bezenšek J, Stanovnik B, Turel I, Dekker FJ (2015) Ruthenium complexes as inhibitors of 15-lipoxygenase-1. Polyhedron 101:306–313CrossRefGoogle Scholar
  46. 46.
    Neault JF, Benkirane A, Malonga H, Tajmir-Riahi HA (2001) Interaction of cisplatin drug with Na, K-ATPase: drug binding mode and protein secondary structure. J Inorg Biochem 86:603–609CrossRefPubMedGoogle Scholar
  47. 47.
    Lewis AJ, Cottney J, White DD, Fox PK, McNeillie A, Dunlop J, Smith WE, Brown DH (1980) Action of gold salts in some inflammatory and immunological models. Agents Actions 10:63–77CrossRefPubMedGoogle Scholar
  48. 48.
    Shimizu S, Watanabe N, Kataoka T, Shoji T, Abe N, Morishita S, Ichimura H (2000) Pyridine and pyridine derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  49. 49.
    Coyle B, Kinsella P, McCann M, Devereux M, O’Connor R, Clynes M, Kavanagh K (2004) Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol In Vitro 18:63–70CrossRefPubMedGoogle Scholar
  50. 50.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  51. 51.
    Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2015) General and specific lipid-protein interactions in Na, K-ATPase. Biochim Biophys Acta Biomembr 1848:1729–1743CrossRefGoogle Scholar
  52. 52.
    Drachmann ND, Olesen C, Moller JV, Guo Z, Nissen P, Bublitz M (2014) Comparing crystal structures of Ca2+-ATPase in the presence of different lipids. FEBS J 281:4249–4262CrossRefPubMedGoogle Scholar
  53. 53.
    Agostina Cinellu M, Minghetti G, Pinna MV, Stoccoro S, Zucca A, Manassero M (1998) The first gold(III) dinuclear cyclometallated derivatives with a single oxo bridge. Chem Comm 21:2397–2398CrossRefGoogle Scholar
  54. 54.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275PubMedGoogle Scholar
  55. 55.
    Phillips TD, Wallacehayes A, Ho IK, Durisala D (1978) Effects of rubratoxin b on the kinetics of cationic and substrate activation of (Na+/K+)-ATPase and p-nitrophenyl phosphatase. J Biol Chem 253:3487–3493PubMedGoogle Scholar
  56. 56.
    Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74:181–203CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Towle AC, Sze PY (1983) Steroid binding to synaptic plasma membrane: differential binding of glucocorticoids and gonadal steroids. J Steroid Biochem 18:135–143CrossRefPubMedGoogle Scholar
  58. 58.
    Bergmeyer HU, Brent E (1974) In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New YorkGoogle Scholar
  59. 59.
    PotRo Serbia (2005) Law on health care. Off Gaz Repub Serbia 107:112–161Google Scholar
  60. 60.
    Fenech M (1993) The cytokinesis blocks micronucleus technique: a detailed description on the method and its application to genotoxicity studies in human populatio. Mutat Res 285:35–44CrossRefPubMedGoogle Scholar
  61. 61.
    Surrales J, Xamena N, Creus A, Marcos R (1995) The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutat Res 342:43–59CrossRefGoogle Scholar
  62. 62.
    Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, Fedosova N, Nissen P (2013) Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342:123–127CrossRefPubMedGoogle Scholar
  63. 63.
    Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium–potassium pump at 2.4 A resolution. Nature 459:446–450CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Aleksandra M. Bondžić
    • 1
  • Mirjana B. Čolović
    • 1
  • Goran V. Janjić
    • 2
  • Božidarka Zarić
    • 2
  • Sandra Petrović
    • 1
  • Danijela Z. Krstić
    • 4
  • Tiziano Marzo
    • 3
    • 5
  • Luigi Messori
    • 3
  • Vesna M. Vasić
    • 1
  1. 1.Department of Physical Chemistry, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, Metallurgy and TechnologyUniversity of BelgradeBelgradeSerbia
  3. 3.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly
  4. 4.Institute of Medical Chemistry, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  5. 5.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations