Cobalt tetradehydrocorrins coordinated by imidazolate-like histidine in the heme pocket of horseradish peroxidase

  • Koji Oohora
  • Ning Tang
  • Yoshitsugu Morita
  • Takashi Hayashi
Original Paper
Part of the following topical collections:
  1. AsBIC8: 8th Asian Biological Inorganic Chemistry Special Issue

Abstract

Horseradish peroxidase was reconstituted with cobalt tetradehydrocorrin, rHRP(Co(TDHC)), as a structural analog of cobalamin coordinated with an imidazolate-like His residue, which is generally seen in native enzymes. In contrast to the previously reported cobalt tetradehydrocorrin-reconstituted myoglobin, rMb(Co(TDHC)), the HRP matrix was expected to provide strong axial ligation by His170 which has imidazolate character. rHRP(CoII(TDHC)) was characterized by EPR and its reaction with reductants indicates a negative shift of its redox potential compared to rMb(Co(TDHC)). Furthermore, aqua- and CN-forms of Co(III) state were prepared. The former species was obtained by oxidation of rHRP(CoII(TDHC)) with K3[Fe(CN)6]. The cyanide-coordinated Co(III) species in the latter was prepared by ligand exchange of rHRP(CoIII(OH)(TDHC)) with exogenous cyanide upon addition of KCN. The 13C NMR chemical shift of cyanide in rHRP(CoIII(CN)(TDHC)) was determined to be 121.8 ppm. IR measurements show that the cyanide of rHRP(CoIII(CN)(TDHC)) has a stretching frequency peak at 2144 cm−1. The 13C NMR and IR measurements indicate strong coordination of cyanide to CoIII(TDHC) relative to rMb(CoIII(CN)(TDHC)). Thus, the extent of π-back donation from the cobalt ion to the cyanide ion is relatively high in rHRP(CoIII(CN)(TDHC)). The pK1/2 values of rHRP(CoIII(OH)(TDHC)) and rHRP(CoIII(CN)(TDHC)) are the same (pK1/2 = 3.2) as determined by a pH titration experiment, indicating that cyanide ligation does not affect Co–His ligation, whereas cyanide ligation weakens the Co–His ligation in rMb(CoIII(CN)(TDHC)). Taken together, these results indicate that HRP reconstituted with cobalt tetradehydrocorrin is a suitable cobalamin-dependent enzyme model with imidazolate-like His residue.

Keywords

Cofactor Cobalamin model Cobalt tetradehydrocorrin Ligand binding 

Supplementary material

775_2017_1458_MOESM1_ESM.pdf (544 kb)
Supplementary material 1 (PDF 543 kb)

References

  1. 1.
    Kräutler B (2009) In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life science. RSC, Cambridge, pp 1–51Google Scholar
  2. 2.
    Kräutler B, Puffer B (2012) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific, Singapore, pp 131–263Google Scholar
  3. 3.
    Kräutler B, Ostermann S (2003) In: Kadish KM, Smith KM, Guilard R (eds) The Porphyrin handbook. Academic Press, San Diego, pp 229–276CrossRefGoogle Scholar
  4. 4.
    Gruber K, Puffer B, Kräutler B (2011) Chem Soc Rev 40:4346–4363CrossRefPubMedGoogle Scholar
  5. 5.
    Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML (1994) Science 266:1669–1674CrossRefPubMedGoogle Scholar
  6. 6.
    Matthews RG (2001) Acc Chem Res 34:681–689CrossRefPubMedGoogle Scholar
  7. 7.
    Brown KL (2005) Chem Rev 105:2075–2150CrossRefPubMedGoogle Scholar
  8. 8.
    Buckel W, Golding BT (1996) Chem Soc Rev 25:329–337CrossRefGoogle Scholar
  9. 9.
    Dong S, Padmakumar R, Maiti N, Banerjee R, Spiro TG (1998) J Am Chem Soc 120:9947–9948CrossRefGoogle Scholar
  10. 10.
    Friedrich P, Baisch U, Harrington RW, Lyatuu F, Zhou K, Zelder F, McFarlane W, Buckel W, Golding BT (2012) Chem Eur J 18:16114–16122CrossRefPubMedGoogle Scholar
  11. 11.
    Brooks AJ, Fox CC, Marsh ENG, Vlasie M, Banerjee R, Brunold TC (2005) Biochemistry 44:15167–15181CrossRefPubMedGoogle Scholar
  12. 12.
    Brooks AJ, Vlasie M, Banerjee R, Brunold TC (2004) J Am Chem Soc 126:8167–8180CrossRefPubMedGoogle Scholar
  13. 13.
    Bucher D, Sandala GM, Durbeej B, Radom L, Smith DM (2012) J Am Chem Soc 134:1591–1599CrossRefPubMedGoogle Scholar
  14. 14.
    Masuda J, Shibata N, Morimoto Y, Toraya T, Yasuoka N (2000) Structure 8:775–788CrossRefPubMedGoogle Scholar
  15. 15.
    Calafat AM, Marzilli LG (1993) J Am Chem Soc 115:9182–9190CrossRefGoogle Scholar
  16. 16.
    Jarrett JT, Choi CY, Matthews RG (1997) Biochemistry 36:15739–15748CrossRefPubMedGoogle Scholar
  17. 17.
    Jarrett JT, Amaratunga M, Drennan CL, Scholten JD, Sands RH, Ludwig ML, Matthews RG (1996) Biochemistry 35:2464–2475CrossRefPubMedGoogle Scholar
  18. 18.
    Matthews RG, Koutmos M, Datta S (2008) Curr Opin Struct Biol 18:658–666CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mancia F, Keep NH, Nakagawa A, Leadlay P, McSweeney S, Rasmussen B, Diat O, Evans PR (1996) Structure 4:339–350CrossRefPubMedGoogle Scholar
  20. 20.
    Reitzer R, Gruber K, Jogl G, Wagner UG, Bothe H, Buckel W, Kratky C (1999) Structure 7:891–902CrossRefPubMedGoogle Scholar
  21. 21.
    Murakami Y, Aoyama Y, Tokunaga K (1980) J Am Chem Soc 102:6736–6744CrossRefGoogle Scholar
  22. 22.
    Liu C-J, Thompson A, Dolphin D (2001) J Inorg Biochem 83:133–138CrossRefPubMedGoogle Scholar
  23. 23.
    Dommaschk M, Thoms V, Schütt C, Näther C, Puttreddy R, Rissanen K, Herges R (2015) Inorg Chem 54:9390–9392CrossRefPubMedGoogle Scholar
  24. 24.
    Sonnay M, Fox T, Blacque O, Zelder F (2016) Chem Sci 7:3836–3842CrossRefGoogle Scholar
  25. 25.
    Zipp CF, Michael JP, Fernandes MA, Nowakowska M, Dirr HW, Marques HM (2015) Inorg Chem Commun 57:15–17CrossRefGoogle Scholar
  26. 26.
    Galezowski W (2005) Inorg Chem 44:1530–1546CrossRefPubMedGoogle Scholar
  27. 27.
    Hisaeda Y, Masuko T, Hanashima E, Hayashi T (2006) Sci Technol Adv Mater 7:655–661CrossRefGoogle Scholar
  28. 28.
    Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O (1996) Chem Rev 96:721–758CrossRefPubMedGoogle Scholar
  29. 29.
    Hayashi T, Morita Y, Mizohata E, Oohora K, Ohbayashi J, Inoue T, Hisaeda Y (2014) Chem Commun 50:12560–12563CrossRefGoogle Scholar
  30. 30.
    Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T (2015) Dalton Trans 45:3277–3284CrossRefGoogle Scholar
  31. 31.
    Morita Y, Oohora K, Mizohata E, Sawada A, Kamachi T, Yoshizawa K, Inoue T, Hayashi T (2016) Inorg Chem 55:1287–1295CrossRefPubMedGoogle Scholar
  32. 32.
    Morita Y, Oohora K, Sawada A, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T (2017) Inorg Chem. doi:10.1021/acs.inorgchem.6b02482 PubMedGoogle Scholar
  33. 33.
    Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038CrossRefPubMedGoogle Scholar
  34. 34.
    Dawson H (1988) Science 240:433–439CrossRefPubMedGoogle Scholar
  35. 35.
    Tamura M, Asakura T, Yonetani T (1972) Biochim Biophys Acta 268:292–304CrossRefPubMedGoogle Scholar
  36. 36.
    DiNello RK, Dolphin DH (1981) J Biol Chem 256:6903–6912PubMedGoogle Scholar
  37. 37.
    Fruk L, Muller J, Niemeyer CM (2006) Chem Eur J 12:7448–7557CrossRefPubMedGoogle Scholar
  38. 38.
    Matsuo T, Murata D, Hisaeda Y, Hori H, Hayashi T (2007) J Am Chem Soc 129:12906–12907CrossRefPubMedGoogle Scholar
  39. 39.
    Teale FWJ (1959) Biochim Biophys Acta 35:543CrossRefPubMedGoogle Scholar
  40. 40.
    Hayashi T (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific, Singapore, pp 1–69Google Scholar
  41. 41.
    Neya S, Suzuki M, Hoshino T, Kawaguchi AT (2013) Inorg Chem 52:7387–7393CrossRefPubMedGoogle Scholar
  42. 42.
    Matsuo T, Dejima H, Hirota S, Murata D, Sato H, Ikegami T, Hori H, Hisaeda Y, Hayashi T (2004) J Am Chem Soc 126:16007–16017CrossRefPubMedGoogle Scholar
  43. 43.
    Reijerse EJ, Sommerhalter M, Hellwig P, Quentmeier A, Rother D, Laurich C, Bothe E, Lubitz W, Friedrich CG (2007) Biochemistry 46:7804–7810CrossRefPubMedGoogle Scholar
  44. 44.
    Banerjee RV, Harder SR, Ragsdale SW, Matthews RG (1990) Biochemistry 29:1129–1135CrossRefPubMedGoogle Scholar
  45. 45.
    Hayward GC, Hill HA, Pratt JM, Vanston NJ, Williams RJ (1965) J Chem Soc 6485–6493Google Scholar
  46. 46.
    Kenneth LB (1999) In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 197–237Google Scholar
  47. 47.
    Brown KL, Hakimi MJ (1984) Inorg Chem 23:1756–1764CrossRefGoogle Scholar
  48. 48.
    Murakami Y, Aoyama Y, Nakanishi S (1976) Inorg Nucl Chem Lett 12:809–812CrossRefGoogle Scholar
  49. 49.
    Pratt JM (1999) In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 73–112Google Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Koji Oohora
    • 1
    • 2
  • Ning Tang
    • 1
  • Yoshitsugu Morita
    • 1
    • 3
    • 4
  • Takashi Hayashi
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.PRESTO JSTKawaguchiJapan
  3. 3.Institute for Materials Chemistry and Engineering and International Research Center for Molecular SystemsKyushu UniversityFukuokaJapan
  4. 4.Faculty of Science and Engineering, Department of Applied ChemistryChuo UniversityBunkyo-kuJapan

Personalised recommendations