Skip to main content
Log in

Cobalt tetradehydrocorrins coordinated by imidazolate-like histidine in the heme pocket of horseradish peroxidase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Horseradish peroxidase was reconstituted with cobalt tetradehydrocorrin, rHRP(Co(TDHC)), as a structural analog of cobalamin coordinated with an imidazolate-like His residue, which is generally seen in native enzymes. In contrast to the previously reported cobalt tetradehydrocorrin-reconstituted myoglobin, rMb(Co(TDHC)), the HRP matrix was expected to provide strong axial ligation by His170 which has imidazolate character. rHRP(CoII(TDHC)) was characterized by EPR and its reaction with reductants indicates a negative shift of its redox potential compared to rMb(Co(TDHC)). Furthermore, aqua- and CN-forms of Co(III) state were prepared. The former species was obtained by oxidation of rHRP(CoII(TDHC)) with K3[Fe(CN)6]. The cyanide-coordinated Co(III) species in the latter was prepared by ligand exchange of rHRP(CoIII(OH)(TDHC)) with exogenous cyanide upon addition of KCN. The 13C NMR chemical shift of cyanide in rHRP(CoIII(CN)(TDHC)) was determined to be 121.8 ppm. IR measurements show that the cyanide of rHRP(CoIII(CN)(TDHC)) has a stretching frequency peak at 2144 cm−1. The 13C NMR and IR measurements indicate strong coordination of cyanide to CoIII(TDHC) relative to rMb(CoIII(CN)(TDHC)). Thus, the extent of π-back donation from the cobalt ion to the cyanide ion is relatively high in rHRP(CoIII(CN)(TDHC)). The pK 1/2 values of rHRP(CoIII(OH)(TDHC)) and rHRP(CoIII(CN)(TDHC)) are the same (pK 1/2 = 3.2) as determined by a pH titration experiment, indicating that cyanide ligation does not affect Co–His ligation, whereas cyanide ligation weakens the Co–His ligation in rMb(CoIII(CN)(TDHC)). Taken together, these results indicate that HRP reconstituted with cobalt tetradehydrocorrin is a suitable cobalamin-dependent enzyme model with imidazolate-like His residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kräutler B (2009) In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life science. RSC, Cambridge, pp 1–51

    Google Scholar 

  2. Kräutler B, Puffer B (2012) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific, Singapore, pp 131–263

    Google Scholar 

  3. Kräutler B, Ostermann S (2003) In: Kadish KM, Smith KM, Guilard R (eds) The Porphyrin handbook. Academic Press, San Diego, pp 229–276

    Chapter  Google Scholar 

  4. Gruber K, Puffer B, Kräutler B (2011) Chem Soc Rev 40:4346–4363

    Article  CAS  PubMed  Google Scholar 

  5. Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML (1994) Science 266:1669–1674

    Article  CAS  PubMed  Google Scholar 

  6. Matthews RG (2001) Acc Chem Res 34:681–689

    Article  CAS  PubMed  Google Scholar 

  7. Brown KL (2005) Chem Rev 105:2075–2150

    Article  CAS  PubMed  Google Scholar 

  8. Buckel W, Golding BT (1996) Chem Soc Rev 25:329–337

    Article  CAS  Google Scholar 

  9. Dong S, Padmakumar R, Maiti N, Banerjee R, Spiro TG (1998) J Am Chem Soc 120:9947–9948

    Article  CAS  Google Scholar 

  10. Friedrich P, Baisch U, Harrington RW, Lyatuu F, Zhou K, Zelder F, McFarlane W, Buckel W, Golding BT (2012) Chem Eur J 18:16114–16122

    Article  CAS  PubMed  Google Scholar 

  11. Brooks AJ, Fox CC, Marsh ENG, Vlasie M, Banerjee R, Brunold TC (2005) Biochemistry 44:15167–15181

    Article  CAS  PubMed  Google Scholar 

  12. Brooks AJ, Vlasie M, Banerjee R, Brunold TC (2004) J Am Chem Soc 126:8167–8180

    Article  CAS  PubMed  Google Scholar 

  13. Bucher D, Sandala GM, Durbeej B, Radom L, Smith DM (2012) J Am Chem Soc 134:1591–1599

    Article  CAS  PubMed  Google Scholar 

  14. Masuda J, Shibata N, Morimoto Y, Toraya T, Yasuoka N (2000) Structure 8:775–788

    Article  CAS  PubMed  Google Scholar 

  15. Calafat AM, Marzilli LG (1993) J Am Chem Soc 115:9182–9190

    Article  CAS  Google Scholar 

  16. Jarrett JT, Choi CY, Matthews RG (1997) Biochemistry 36:15739–15748

    Article  CAS  PubMed  Google Scholar 

  17. Jarrett JT, Amaratunga M, Drennan CL, Scholten JD, Sands RH, Ludwig ML, Matthews RG (1996) Biochemistry 35:2464–2475

    Article  CAS  PubMed  Google Scholar 

  18. Matthews RG, Koutmos M, Datta S (2008) Curr Opin Struct Biol 18:658–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mancia F, Keep NH, Nakagawa A, Leadlay P, McSweeney S, Rasmussen B, Diat O, Evans PR (1996) Structure 4:339–350

    Article  CAS  PubMed  Google Scholar 

  20. Reitzer R, Gruber K, Jogl G, Wagner UG, Bothe H, Buckel W, Kratky C (1999) Structure 7:891–902

    Article  CAS  PubMed  Google Scholar 

  21. Murakami Y, Aoyama Y, Tokunaga K (1980) J Am Chem Soc 102:6736–6744

    Article  CAS  Google Scholar 

  22. Liu C-J, Thompson A, Dolphin D (2001) J Inorg Biochem 83:133–138

    Article  CAS  PubMed  Google Scholar 

  23. Dommaschk M, Thoms V, Schütt C, Näther C, Puttreddy R, Rissanen K, Herges R (2015) Inorg Chem 54:9390–9392

    Article  CAS  PubMed  Google Scholar 

  24. Sonnay M, Fox T, Blacque O, Zelder F (2016) Chem Sci 7:3836–3842

    Article  CAS  Google Scholar 

  25. Zipp CF, Michael JP, Fernandes MA, Nowakowska M, Dirr HW, Marques HM (2015) Inorg Chem Commun 57:15–17

    Article  CAS  Google Scholar 

  26. Galezowski W (2005) Inorg Chem 44:1530–1546

    Article  CAS  PubMed  Google Scholar 

  27. Hisaeda Y, Masuko T, Hanashima E, Hayashi T (2006) Sci Technol Adv Mater 7:655–661

    Article  CAS  Google Scholar 

  28. Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O (1996) Chem Rev 96:721–758

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi T, Morita Y, Mizohata E, Oohora K, Ohbayashi J, Inoue T, Hisaeda Y (2014) Chem Commun 50:12560–12563

    Article  CAS  Google Scholar 

  30. Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T (2015) Dalton Trans 45:3277–3284

    Article  Google Scholar 

  31. Morita Y, Oohora K, Mizohata E, Sawada A, Kamachi T, Yoshizawa K, Inoue T, Hayashi T (2016) Inorg Chem 55:1287–1295

    Article  CAS  PubMed  Google Scholar 

  32. Morita Y, Oohora K, Sawada A, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T (2017) Inorg Chem. doi:10.1021/acs.inorgchem.6b02482

    PubMed  Google Scholar 

  33. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038

    Article  CAS  PubMed  Google Scholar 

  34. Dawson H (1988) Science 240:433–439

    Article  CAS  PubMed  Google Scholar 

  35. Tamura M, Asakura T, Yonetani T (1972) Biochim Biophys Acta 268:292–304

    Article  CAS  PubMed  Google Scholar 

  36. DiNello RK, Dolphin DH (1981) J Biol Chem 256:6903–6912

    CAS  PubMed  Google Scholar 

  37. Fruk L, Muller J, Niemeyer CM (2006) Chem Eur J 12:7448–7557

    Article  CAS  PubMed  Google Scholar 

  38. Matsuo T, Murata D, Hisaeda Y, Hori H, Hayashi T (2007) J Am Chem Soc 129:12906–12907

    Article  CAS  PubMed  Google Scholar 

  39. Teale FWJ (1959) Biochim Biophys Acta 35:543

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi T (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific, Singapore, pp 1–69

    Google Scholar 

  41. Neya S, Suzuki M, Hoshino T, Kawaguchi AT (2013) Inorg Chem 52:7387–7393

    Article  CAS  PubMed  Google Scholar 

  42. Matsuo T, Dejima H, Hirota S, Murata D, Sato H, Ikegami T, Hori H, Hisaeda Y, Hayashi T (2004) J Am Chem Soc 126:16007–16017

    Article  CAS  PubMed  Google Scholar 

  43. Reijerse EJ, Sommerhalter M, Hellwig P, Quentmeier A, Rother D, Laurich C, Bothe E, Lubitz W, Friedrich CG (2007) Biochemistry 46:7804–7810

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee RV, Harder SR, Ragsdale SW, Matthews RG (1990) Biochemistry 29:1129–1135

    Article  CAS  PubMed  Google Scholar 

  45. Hayward GC, Hill HA, Pratt JM, Vanston NJ, Williams RJ (1965) J Chem Soc 6485–6493

  46. Kenneth LB (1999) In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 197–237

    Google Scholar 

  47. Brown KL, Hakimi MJ (1984) Inorg Chem 23:1756–1764

    Article  CAS  Google Scholar 

  48. Murakami Y, Aoyama Y, Nakanishi S (1976) Inorg Nucl Chem Lett 12:809–812

    Article  CAS  Google Scholar 

  49. Pratt JM (1999) In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 73–112

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research provided by JSPS KAKENHI Grant Numbers JP15H05804, JP24655051, JP15H00944, JP22105013, and JP16H00837, the JSPS Japanese–German Graduate Externship, and JST PRESTO (JPMJPR15S2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oohora, K., Tang, N., Morita, Y. et al. Cobalt tetradehydrocorrins coordinated by imidazolate-like histidine in the heme pocket of horseradish peroxidase. J Biol Inorg Chem 22, 695–703 (2017). https://doi.org/10.1007/s00775-017-1458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1458-z

Keywords

Navigation