Advertisement

Similarities and differences of copper and zinc cations binding to biologically relevant peptides studied by vibrational spectroscopies

  • Alicia Schirer
  • Youssef El Khoury
  • Peter Faller
  • Petra Hellwig
Original Paper

Abstract

GHK and DAHK are biological peptides that bind both copper and zinc cations. Here we used infrared and Raman spectroscopies to study the coordination modes of both copper and zinc ions, at pH 6.8 and 8.9, correlating the data with the crystal structures that are only available for the copper-bound form. We found that Cu(II) binds to deprotonated backbone (amidate), the N-terminus and Nπ of the histidine side chain, in both GHK and DAHK, at pH 6.8 and 8.9. The data for the coordination of zinc at pH 6.8 points to two conformers including both nitrogens of a histidine residue. At pH 8.9, vibrational spectra of the ZnGHK complexes show that equilibria between monomers, oligomers exist, where deprotonated histidine residues as well as deprotonated amide nitrogen are involved in the coordination. A common feature is found: zinc cations coordinate to Nτ and/or Nπ of the His leading to the formation of GHK and DAHK multimers. In contrast, Cu(II) binds His via Nπ regardless of the peptide, in a pH-independent manner.

Keywords

Infrared spectroscopy Raman spectroscopy GHK DAHK Peptide copper coordination Zinc coordination 

Abbreviations

FTIR

Fourier transform infrared

GHK

NH2-Glycine-histidine-lysine-COOH

DAHK

NH2-Aspartic acid-alanine-histidine-lysine-COOH

HSA

Human serum albumin

υ

Stretching vibration

δ

In-plane bending vibration

ω

Wagging vibration

Notes

Acknowledgements

A. Schirer, Y. El Khoury and P. Hellwig acknowledge the support by the University of Strasbourg, the CNRS as well as the FRC. P. Faller gratefully acknowledges the support of the University of Strasbourg and the University of Strasbourg Institute for Advanced Study (USIAS).

References

  1. 1.
    Bal W, Sokolowska M, Kurowska E, Faller P (2013) Biochim Biophys Acta 1830:5444–5455CrossRefPubMedGoogle Scholar
  2. 2.
    Masuoka J, Saltman P (1994) J Biol Chem 269:25557–25561PubMedGoogle Scholar
  3. 3.
    Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) J Inorg Biochem 70:33–39CrossRefPubMedGoogle Scholar
  4. 4.
    Hureau C, Eury H, Guillot R, Bijani C, Sayen S, Solari PL, Guillon E, Faller P, Dorlet P (2011) Chemistry 17:10151–10160CrossRefPubMedGoogle Scholar
  5. 5.
    Handing KB, Shabalin IG, Kassaar O, Khazaipoul S, Blindauer CA, Stewart AJ, Chruszcz M, Minor W (2016) Chemi Sci 7:6635–6648CrossRefGoogle Scholar
  6. 6.
    Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Proc Natl Acad Sci U S A 100:3701–3706CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lakusta H, Sarkar B (1979) J Inorg Biochem 11:303–315CrossRefGoogle Scholar
  8. 8.
    Pickart L, Freedman JH, Loker WJ, Peisach J, Perkins CM, Stenkamp RE, Weinstein B (1980) Nature 288:715–717CrossRefPubMedGoogle Scholar
  9. 9.
    Pickart L, Vasquez-Soltero JM, Margolina A (2015) Biomed Res Int. doi: 10.1155/2015/648108 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Campbell JD, McDonough JE, Zeskind JE, Hackett TL, Pechkovsky DV, Brandsma C-A, Suzuki M, Gosselink JV, Liu G, Alekseyev YO, Xiao J, Zhang X, Hayashi S, Cooper JD, Timens W, Postma DS, Knight DA, Lenburg ME, Hogg JC, Spira A (2012) Genome Med 4:67PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pickart L, Vasquez-Soltero JM, Margolina A (2012) Oxid Med Cell Longev 2012:324832CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong Y, Downey T, Eu KW, Koh PK, Cheah PY (2010) Clin Exp Metastasis 27:83–90CrossRefPubMedGoogle Scholar
  13. 13.
    Trapaidze A, Hureau C, Bal W, Winterhalter M, Faller P (2012) J Biol Inorg Chem 17:37–47CrossRefPubMedGoogle Scholar
  14. 14.
    Conato C, Gavioli R, Guerrini R, Kozlowski H, Mlynarz P, Pasti C, Pulidori F, Remelli M (2001) Biochim Biophys Acta 1526:199–210CrossRefPubMedGoogle Scholar
  15. 15.
    Freedman JH, Pickart L, Weinstein B, Mims WB, Peisach J (1982) Biochemistry 21:4540–4544CrossRefPubMedGoogle Scholar
  16. 16.
    Perkins CM, Rose NJ, Weinstein B, Stenkamp RE, Jensen LH, Pickart L (1984) Inorg Chim Acta 82:93–99CrossRefGoogle Scholar
  17. 17.
    (1984) Eur J Biochem 138:9-37Google Scholar
  18. 18.
    Faller P (2009) ChemBioChem 10:2837–2845CrossRefPubMedGoogle Scholar
  19. 19.
    Hureau C, Faller P (2009) Biochimie 91:1212–1217CrossRefPubMedGoogle Scholar
  20. 20.
    Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256:2129–2141CrossRefGoogle Scholar
  21. 21.
    Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim YS, Huang XD, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Neuron 30:665–676CrossRefPubMedGoogle Scholar
  22. 22.
    Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV, Yukl RL, Kingston RG, Curtis CG (2001) Biochem Biophys Res Commun 284:856–862CrossRefPubMedGoogle Scholar
  23. 23.
    Gum ET, Swanson RA, Alano C, Liu J, Hong S, Weinstein PR, Panter SS (2004) Stroke 35:590–595CrossRefPubMedGoogle Scholar
  24. 24.
    Agostinho P, Cunha RA, Oliveira C (2010) Curr Pharm Des 16:2766–2778CrossRefPubMedGoogle Scholar
  25. 25.
    Hu X, Zhang Q, Wang W, Yuan Z, Zhu X, Chen B, Chen X (2016) ACS Chem Neurosci 7:1255–1263CrossRefPubMedGoogle Scholar
  26. 26.
    Miura T, Satoh T, Hori-i A, Takeuchi H (1998) J Raman Spectrosc 29:41–47CrossRefGoogle Scholar
  27. 27.
    Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031CrossRefPubMedGoogle Scholar
  28. 28.
    Takeuchi H (2003) Biopolymers 72:305–317CrossRefPubMedGoogle Scholar
  29. 29.
    El Khoury Y, Dorlet P, Faller P, Hellwig P (2011) J Phys Chem B 115:14812–14821CrossRefPubMedGoogle Scholar
  30. 30.
    Andrushchenko VV, Vogel HJ, Prenner EJ (2007) J Pep Sci 13:37–43CrossRefGoogle Scholar
  31. 31.
    Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430CrossRefPubMedGoogle Scholar
  32. 32.
    Barth A (2000) Prog Biophys Mol Biol 74:141–173CrossRefPubMedGoogle Scholar
  33. 33.
    Hasegawa K, Ono T-A, Noguchi T (2000) J Phys Chem B 104:4253–4265CrossRefGoogle Scholar
  34. 34.
    Hasegawa K, Ono T, Noguchi T (2002) J Phys Chem A 106:3377–3390CrossRefGoogle Scholar
  35. 35.
    Torreggiani A, Bonora S, Fini G (2000) Biopolymers 57:352–364CrossRefPubMedGoogle Scholar
  36. 36.
    Takeuchi H (2011) Anal Sci 27:1077–1086CrossRefPubMedGoogle Scholar
  37. 37.
    Sóvágó I, Várnagy K, Lihi N, Grenács Á (2016) Coord Chem Rev 327–328:43–54CrossRefGoogle Scholar
  38. 38.
    Farkas E, Sovago I, Gergely A (1983) Dalton Trans 1983:1545–1551CrossRefGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  • Alicia Schirer
    • 1
  • Youssef El Khoury
    • 1
  • Peter Faller
    • 2
  • Petra Hellwig
    • 1
  1. 1.Laboratoire de bioélectrochimie et spectroscopie, UMR 7140université de StrasbourgStrasbourgFrance
  2. 2.Laboratoire de biométaux et chimie biologie, UMR 7177université de StrasbourgStrasbourgFrance

Personalised recommendations