Effect of methionine80 heme coordination on domain swapping of cytochrome c
- 244 Downloads
- 3 Citations
Abstract
Cytochrome c (cyt c) forms oligomers by domain swapping. It exchanges the C-terminal α-helical region between protomers, and the Met80‒heme iron bond is perturbed significantly in domain-swapped oligomers. The peroxidase activity of cyt c increases by Met80 dissociation from the heme iron, which may trigger apoptosis. This study elucidates the effect of the Met80 heme coordination on cyt c domain swapping by obtaining oligomers for both wild-type (WT) and M80A human cyt c by an addition of ethanol to their monomers, followed by lyophilization and dissolution to buffer, and investigating their dimer properties. The absorption and circular dichroism spectra of WT and M80A cyt c exhibited similar changes upon dimerization, indicating that Met80 does not affect the oligomerization process significantly. According to differential scanning calorimetric measurements, Met80 coordination to the heme iron had an effect on the stabilization of the monomer (ΔH = 16 kcal/mol), whereas no large difference was observed between the dimer-to-monomer dissociation temperatures of WT and M80A cyt c (61.0 °C). The activation enthalpy values were similar and relatively large for the dissociation of both WT and M80A cyt c dimers (WT, 120 ± 10 kcal/mol; M80A, 110 ± 10 kcal/mol), indicating that the dimers suffered large structural changes upon dissociation to monomers independent of the Met80 coordination to the heme iron. These results indicate that cyt c domain swapping may occur regardless of the Met80 coordination, whereas the monomer is stabilized by Met80 but the domain-swapped dimer structure and stability are less affected by the Met80 coordination.
Keywords
Cytochrome c Domain swapping Methionine coordination OligomerizationAbbreviations
- CD
Circular dichroism
- Cyt
Cytochrome
- DSC
Differential scanning calorimetry
- FPLC
Fast protein liquid chromatography
- HT
Hydrogenobacter thermophilus
- ΔH
Enthalpy change
- ΔH‡
Activation enthalpy
- PA
Pseudomonas aeruginosa
- K
Rate constant
- ΔS‡
Activation entropy
- SEC
Size exclusion chromatography
- Tm
Dissociation temperature
- WT
Wild-type
Notes
Acknowledgements
We thank Mr. Leigh McDowell, Nara Institute of Science and Technology, for his advice on manuscript preparation. This work was partially supported by Grants-in-Aid for Scientific Research from JSPS (Category B, No. JP26288080, S.H.; Challenging Exploratory Research, No. JP15K13744, S.H.; Scientific Research on Innovative Areas, No. JP16H00839, S.H.; Young Scientists B, No. JP16K17935, S.N.), Natural Science Foundation of Sichuan Province of China (No. 11ZB029, Z.W.), Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (No. CSPC2011-7-2, Z.W.), and Doctoral Fund of China West Normal University (No. 07B011, Z.W.).
Supplementary material
References
- 1.Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Science 310:66–67CrossRefPubMedGoogle Scholar
- 2.Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cell 91:479–489CrossRefPubMedGoogle Scholar
- 3.Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) J Biol Chem 246:1511–1535PubMedGoogle Scholar
- 4.Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214:585–595CrossRefPubMedGoogle Scholar
- 5.Simon M, Metzinger-Le Meuth V, Chevance S, Delalande O, Bondon A (2013) J Biol Inorg Chem 18:27–38CrossRefPubMedGoogle Scholar
- 6.Lin YW, Wang J (2013) J Inorg Biochem 129:162–171CrossRefPubMedGoogle Scholar
- 7.Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tortora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R (2016) Biochemistry 55:407–428CrossRefPubMedGoogle Scholar
- 8.Hanske J, Toffey JR, Morenz AM, Bonilla AJ, Schiavoni KH, Pletneva EV (2012) Proc Natl Acad Sci USA 109:125–130CrossRefPubMedGoogle Scholar
- 9.Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232CrossRefPubMedGoogle Scholar
- 10.Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Biochemistry 45:4998–5009CrossRefPubMedPubMedCentralGoogle Scholar
- 11.McClelland LJ, Mou TC, Jeakins-Cooley ME, Sprang SR, Bowler BE (2014) Proc Natl Acad Sci USA 111:6648–6653CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Rosell FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245CrossRefGoogle Scholar
- 13.Pollock WB, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Biochemistry 37:6124–6131CrossRefPubMedGoogle Scholar
- 14.Assfalg M, Bertini I, Dolfi A, Turano P, Mauk AG, Rosell FI, Gray HB (2003) J Am Chem Soc 125:2913–2922CrossRefPubMedGoogle Scholar
- 15.Assfalg M, Bertini I, Turano P, Mauk AG, Winkler JR, Gray HB (2003) Biophys J 84:3917–3923CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y (2010) Proc Natl Acad Sci USA 107:12854–12859CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Bennett MJ, Choe S, Eisenberg D (1994) Proc Natl Acad Sci USA 91:3127–3131CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Liu Y, Eisenberg D (2002) Protein Sci 11:1285–1299CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Rousseau F, Schymkowitz JW, Itzhaki LS (2003) Structure 11:243–251CrossRefPubMedGoogle Scholar
- 20.Gronenborn AM (2009) Curr Opin Struct Biol 19:39–49CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Wang Z, Matsuo T, Nagao S, Hirota S (2011) Org Biomol Chem 9:4766–4769CrossRefPubMedGoogle Scholar
- 22.Parui PP, Deshpande MS, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S (2013) Biochemistry 52:8732–8744CrossRefPubMedGoogle Scholar
- 23.Deshpande MS, Parui PP, Kamikubo H, Yamanaka M, Nagao S, Komori H, Kataoka M, Higuchi Y, Hirota S (2014) Biochemistry 53:4696–4703CrossRefPubMedGoogle Scholar
- 24.Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S (2012) Biochemistry 51:8608–8616CrossRefPubMedGoogle Scholar
- 25.Nagao S, Ueda M, Osuka H, Komori H, Kamikubo H, Kataoka M, Higuchi Y, Hirota S (2015) PLoS One 10:e0123653CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Ren C, Nagao S, Yamanaka M, Komori H, Shomura Y, Higuchi Y, Hirota S (2015) Mol BioSyst 11:3218–3221CrossRefPubMedGoogle Scholar
- 27.Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S (2015) Chem Sci 6:7336–7342CrossRefGoogle Scholar
- 28.Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S (2015) Protein Sci 24:366–375CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Matsuura Y, Takano T, Dickerson RE (1982) J Mol Biol 156:389–409CrossRefPubMedGoogle Scholar
- 30.Behera RK, Nakajima H, Rajbongshi J, Watanabe Y, Mazumdar S (2013) Biochemistry 52:1373–1384CrossRefPubMedGoogle Scholar
- 31.Wang ZH, Lin YW, Rosell FI, Ni FY, Lu HJ, Yang PY, Tan XS, Li XY, Huang ZX, Mauk AG (2007) ChemBioChem 8:607–609CrossRefPubMedGoogle Scholar
- 32.Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15CrossRefPubMedGoogle Scholar
- 33.Yeh SR, Han SW, Rousseau DL (1998) Accounts Chem Res 31:727–736CrossRefGoogle Scholar
- 34.Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M (2012) J Biochem 152:521–529CrossRefPubMedGoogle Scholar
- 35.Lu Y, Casimiro DR, Bren KL, Richards JH, Gray HB (1993) Proc Natl Acad Sci USA 90:11456–11459CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Silkstone GG, Cooper CE, Svistunenko D, Wilson MT (2005) J Am Chem Soc 127:92–99CrossRefPubMedGoogle Scholar
- 37.Bren KL, Gray HB, Banci L, Bertini I, Turano P (1995) J Am Chem Soc 117:8067–8073CrossRefGoogle Scholar
- 38.Banci L, Bertini I, Bren KL, Gray HB, Sompornpisut P, Turano P (1995) Biochemistry 34:11385–11398CrossRefPubMedGoogle Scholar
- 39.Nugraheni AD, Nagao S, Yanagisawa S, Ogura T, Hirota S (2013) J Biol Inorg Chem 18:383–390CrossRefPubMedGoogle Scholar
- 40.Brill AS, Williams RJ (1961) Biochem J 78:246–253CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Bennett MJ, Sawaya MR, Eisenberg D (2006) Structure 14:811–824CrossRefPubMedGoogle Scholar
- 42.Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M (2001) Nat Struct Biol 8:316–320CrossRefPubMedGoogle Scholar
- 43.Newcomer ME (2002) Curr Opin Struct Biol 12:48–53CrossRefPubMedGoogle Scholar
- 44.Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C (1997) Structure 5:1157–1171CrossRefPubMedGoogle Scholar
- 45.Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff ED (1999) EMBO J 18:6271–6281CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Czjzek M, Létoffé S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N (2007) J Mol Biol 365:1176–1186CrossRefPubMedGoogle Scholar
- 47.Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S (2012) Dalton Trans 41:11378–11385CrossRefPubMedGoogle Scholar
- 48.Silva MA, Lucas TG, Salgueiro CA, Gomes CM (2012) PLoS One 7:e46328CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Bai Y, Sosnick TR, Mayne L, Englander SW (1995) Science 269:192–197CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Russell BS, Zhong L, Bigotti MG, Cutruzzola F, Bren KL (2003) J Biol Inorg Chem 8:156–166CrossRefPubMedGoogle Scholar
- 51.Russell BS, Melenkivitz R, Bren KL (2000) Proc Natl Acad Sci USA 97:8312–8317CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Hong XL, Dixon DW (1989) FEBS Lett 246:105–108CrossRefPubMedGoogle Scholar
- 53.Yamamoto Y, Terui N, Tachiiri N, Minakawa K, Matsuo H, Kameda T, Hasegawa J, Sambongi Y, Uchiyama S, Kobayashi Y, Igarashi Y (2002) J Am Chem Soc 124:11574–11575CrossRefPubMedGoogle Scholar
- 54.George P, Glauser SC, Schejter A (1967) J Biol Chem 242:1690–1695PubMedGoogle Scholar