Skip to main content

Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics

Abstract

Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

(from 4WHR.pdb)

Fig. 3
Fig. 4
Fig. 5

References

  1. Hayaishi O, Katagiri M, Rothberg S (1955) J Am Chem Soc 77:5450–5451

    CAS  Article  Google Scholar 

  2. Mason HS, Fowlks WL, Peterson E (1955) J Am Chem Soc 77:2914–2915

    CAS  Article  Google Scholar 

  3. Hayaishi O (2008) J Biol Chem 283:19165–19175

    CAS  PubMed  Article  Google Scholar 

  4. Hayaishi O, Rothberg S, Mehler AH, Saito Y (1957) J Biol Chem 229:889–896

    CAS  PubMed  Google Scholar 

  5. Geng J, Liu A (2014) Arch Biochem Biophys 544:18–26

    CAS  PubMed  Article  Google Scholar 

  6. Raven EL (2017) J Biol Inorg Chem. doi:10.1007/s00775-016-1412-5

    Google Scholar 

  7. Kal S, Que L Jr (2017) J Biol Inorg Chem. doi:10.1007/s00775-016-1431-2

    PubMed  Google Scholar 

  8. Proshlyakov DA, John CW, McKracken C, Hausinger RP (2017) J Biol Inorg Chem. doi:10.1007/s00775-016-1406-3

    Google Scholar 

  9. Gibson DT and Subramanian V (1984) In: Gibson DT (ed). Microbial degradation of organic compounds, Marcel Dekker, Inc., New York

  10. Seo JS, Keum YS, Li QX (2009) Int J Environ Res Public Health 6:278–309

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042

    CAS  PubMed  Article  Google Scholar 

  12. Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) J Biol Chem 276:1945–1953

    CAS  PubMed  Article  Google Scholar 

  13. Uhlin U, Eklund H (1994) Nature 370:533–539

    CAS  PubMed  Article  Google Scholar 

  14. Nordlund P, Eklund H (1993) J Mol Biol 232:123–164

    CAS  PubMed  Article  Google Scholar 

  15. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586

    CAS  PubMed  Article  Google Scholar 

  16. Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) J Mol Biol 296:701–712

    CAS  PubMed  Article  Google Scholar 

  17. Pavel EG, Martins LJ, Ellis WR, Solomon EI (1994) Chem Biol 1:173–183

    CAS  PubMed  Article  Google Scholar 

  18. Yang TC, Wolfe MD, Neibergall MB, Mekmouche Y, Lipscomb JD, Hoffman BM (2003) J Am Chem Soc 125:7056–7066

    CAS  PubMed  Article  Google Scholar 

  19. Martins BM, Svetlitchnaia T, Dobbek H (2005) Structure 13:817–824

    CAS  PubMed  Article  Google Scholar 

  20. Ohta T, Chakrabarty S, Lipscomb JD, Solomon EI (2008) J Am Chem Soc 130:1601–1610

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD (2015) Biochemistry 54:4652–4664

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H (2012) BMC Struct Biol 12:15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Neibergall MB, Stubna A, Mekmouche Y, Münck E, Lipscomb JD (2007) Biochemistry 46:8004–8016

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Bugg TDH, Ramaswamy S (2008) Curr Opin Chem Biol 12:134–140

    CAS  PubMed  Article  Google Scholar 

  25. Tarasev M, Rhames F, Ballou DP (2004) Biochemistry 43:12799–12808

    CAS  PubMed  Article  Google Scholar 

  26. Tarasev M, Ballou DP (2005) Biochemistry 44:6197–6207

    CAS  PubMed  Article  Google Scholar 

  27. Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A (2011) J Biol Chem 286:26541–26554

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Geng J, Dornevil K, Liu A (2012) J Am Chem Soc 134:12209–12218

    CAS  PubMed  Article  Google Scholar 

  29. Chen K, Que L Jr (2001) J Am Chem Soc 123:6327–6337

    CAS  PubMed  Article  Google Scholar 

  30. Chen K, Costas M, Kim J, Tipton AK, Que L Jr (2002) J Am Chem Soc 124:3026–3035

    CAS  PubMed  Article  Google Scholar 

  31. Oloo WN, Fielding AJ, Que L Jr (2013) J Am Chem Soc 135:6438–6441

    CAS  PubMed  Article  Google Scholar 

  32. Prat I, Mathieson JS, Guell M, Ribas X, Luis JM, Cronin L, Costas M (2011) Nat Chem 3:788–793

    CAS  PubMed  Article  Google Scholar 

  33. Lyakin OY, Prat I, Bryliakov KP, Costas M, Talsi EP (2012) Catal Commun 29:105–108

    CAS  Article  Google Scholar 

  34. Olivo G, Cusso O, Borrell M, Costas M (2017) J Biol Inorg Chem. doi:10.1007/s00775-016-1434-z

    PubMed  Google Scholar 

  35. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) B. Fungal Genet Biol 27:175–185

    CAS  PubMed  Article  Google Scholar 

  36. Ruiz-Duenas FJ, Martinez AT (2009) Microb Biotechnol 2:164–177

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Hayaishi O, Hashimoto K (1950) J Biochem (Tokyo) 37:71

    Article  Google Scholar 

  38. Hayaishi O, Katagiri M, Rothberg S (1957) J Biol Chem 229:905–920

    CAS  PubMed  Google Scholar 

  39. Stanier RY, Ingraham JL (1954) J Biol Chem 210:799–808

    CAS  PubMed  Google Scholar 

  40. Hayaishi O (1966) Bacteriol Rev 30:720–731

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dagley S, Evans WC, Ribbons DW (1960) Nature 188:560–566

    CAS  PubMed  Article  Google Scholar 

  42. Kojima Y, Itada N, Hayaishi O (1961) J Biol Chem 236:2223–2228

    CAS  PubMed  Google Scholar 

  43. Adachi K, Takeda Y, Senoh S, Kita H (1964) Biochim Biophys Acta 93:483–493

    CAS  PubMed  Article  Google Scholar 

  44. Lipscomb JD (2008) Curr Opin Struct Biol 18:644–649

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Acc Chem Res 40:475–483

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Vaillancourt FH, Bolin JT, Eltis LD (2006) Crit Rev Biochem Mol Biol 41:241–267

    CAS  PubMed  Article  Google Scholar 

  47. Abu-Omar MM, Loaiza A, Hontzeas N (2005) Chem Rev 105:2227–2252

    CAS  PubMed  Article  Google Scholar 

  48. Bugg TDH (2003) Tetrahedron 59:7075–7101

    CAS  Article  Google Scholar 

  49. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349

    CAS  PubMed  Article  Google Scholar 

  50. Broderick JB (1999) Essays Biochem 34:173–189

    CAS  PubMed  Article  Google Scholar 

  51. Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624

    CAS  PubMed  Article  Google Scholar 

  52. Spence EL, Kawamukai M, Sanvoisin J, Braven H, Bugg TD (1996) J Bacteriol 178:5249–5256

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Eltis LD, Bolin JT (1996) J Bacteriol 178:5930–5937

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT (1995) Science 270:976–980

    CAS  PubMed  Article  Google Scholar 

  55. Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y (1996) J Mol Biol 255:735–752

    CAS  PubMed  Article  Google Scholar 

  56. Dunwell JM (1998) Biotechnol Genet Eng Rev 15:1–32

    CAS  PubMed  Article  Google Scholar 

  57. Khuri S, Bakker FT, Dunwell JM (2001) Mol Biol Evol 18:593–605

    CAS  PubMed  Article  Google Scholar 

  58. Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Trends Biochem Sci 26:740–746

    CAS  PubMed  Article  Google Scholar 

  59. Fetzner S (2012) Appl Environ Microbiol 78:2505–2514

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, Begley TP (2005) Biochemistry 44:7623–7631

    CAS  PubMed  Article  Google Scholar 

  61. Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, Liu A (2015) J Biol Chem 290:15621–15634

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Zhang Y, Colabroy KL, Begley TP, Ealick SE (2005) Biochemistry 44:7632–7643

    CAS  PubMed  Article  Google Scholar 

  63. Bugg TDH, Lin G (2001) Chem Commun 11:941–952

    Article  CAS  Google Scholar 

  64. Kovaleva EG, Lipscomb JD (2007) Science 316:453–457

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Kovaleva EG, Lipscomb JD (2008) Biochemistry 47:11168–11170

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Münck E, Lipscomb JD (2010) Proc Natl Acad Sci USA 107:16788–16793

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188

    CAS  PubMed  Article  Google Scholar 

  68. Mbughuni MM, Chakrabarti M, Hayden JA, Meier KK, Dalluge JJ, Hendrich MP, Münck E, Lipscomb JD (2011) Biochemistry 50:10262–10274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Kovaleva EG, Lipscomb JD (2012) Biochemistry 51:8755–8763

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Mbughuni MM, Meier KK, Münck E, Lipscomb JD (2012) Biochemistry 51:8743–8754

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Hegg EL, Que L Jr (1997) Eur J Biochem 250:625–629

    CAS  PubMed  Article  Google Scholar 

  72. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Arciero DM, Lipscomb JD (1986) J Biol Chem 261:2170–2178

    CAS  PubMed  Google Scholar 

  74. Jeoung JH, Bommer M, Lin TY, Dobbek H (2013) Proc Natl Acad Sci USA 110:12625–12630

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    CAS  PubMed  Article  Google Scholar 

  76. Deeth RJ, Bugg TDH (2003) J Biol Inorg Chem 8:409–418

    CAS  PubMed  Google Scholar 

  77. Christian GJ, Ye S, Neese F (2012) Chem Sci 3:1600–1611

    CAS  Article  Google Scholar 

  78. Dong G, Shaik S, Lai W (2013) Chem Sci 4:3624–3635

    CAS  Article  Google Scholar 

  79. Sanvoisin J, Langley GJ, Bugg TDH (1995) J Am Chem Soc 117:7836–7837

    CAS  Article  Google Scholar 

  80. Xin M, Bugg TD (2008) J Am Chem Soc 130:10422–10430

    CAS  PubMed  Article  Google Scholar 

  81. Borowski T, Wojcik A, Milaczewska A, Georgiev V, Blomberg MRA, Siegbahn PEM (2012) J Biol Inorg Chem 17:881–890

    CAS  PubMed  Article  Google Scholar 

  82. Mendel S, Arndt A, Bugg TDH (2004) Biochemistry 43:13390–13396

    CAS  PubMed  Article  Google Scholar 

  83. Ohlendorf DH, Lipscomb JD, Weber PC (1988) Nature 336:403–405

    CAS  PubMed  Article  Google Scholar 

  84. Orville AM, Elango N, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10039–10051

    CAS  PubMed  Article  Google Scholar 

  85. Orville AM, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10052–10066

    CAS  PubMed  Article  Google Scholar 

  86. Davis MI, Wasinger EC, Decker A, Pau MYM, Vaillancourt FH, Bolin JT, Eltis LD, Hedman B, Hodgson KO, Solomon EI (2003) J Am Chem Soc 125:11214–11227

    CAS  PubMed  Article  Google Scholar 

  87. Knoot CJ, Purpero VM, Lipscomb JD (2015) Proc Natl Acad Sci USA 112:388–393

    CAS  PubMed  Article  Google Scholar 

  88. Pau MY, Lipscomb JD, Solomon EI (2007) Proc Natl Acad Sci USA 104:18355–18362

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Que L Jr, Lipscomb JD, Münck E, Wood JM (1977) Biochim Biophys Acta 485:60–74

    CAS  PubMed  Article  Google Scholar 

  90. Schlosrich J, Eley KL, Crowley PJ, Bugg TDH (2006) ChemBioChem 7:1899–1908

    CAS  PubMed  Article  Google Scholar 

  91. Groce SL, Lipscomb JD (2003) J Am Chem Soc 125:11780–11781

    CAS  PubMed  Article  Google Scholar 

  92. Simmons CR, Krishnamoorthy K, Granett SL, Schuller DJ, Dominy JE Jr, Begley TP, Stipanuk MH, Karplus PA (2008) Biochemistry 47:11390–11392

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) J Biol Chem 282:25189–25198

    CAS  PubMed  Article  Google Scholar 

  94. Richerson RB, Ziegler DM (1987) Methods Enzymol 143:410–415

    CAS  PubMed  Article  Google Scholar 

  95. Bruland N, Wubbeler JH, Steinbuchel A (2009) J Biol Chem 284:660–672

    CAS  PubMed  Article  Google Scholar 

  96. Tchesnokov EP, Fellner M, Siakkou E, Kleffmann T, Martin LW, Aloi S, Lamont IL, Wilbanks SM, Jameson GN (2015) J Biol Chem 290:24424–24437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Pierce BS, Subedi BP, Sardar S, Crowell JK (2015) Biochemistry 54:7477–7490

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Driggers CM, Cooley RB, Sankaran B, Hirschberger LL, Stipanuk MH, Karplus PA (2013) J Mol Biol 425:3121–3136

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Kumar D, Thiel W, de Visser SP (2011) J Am Chem Soc 133:3869–3882

    CAS  PubMed  Article  Google Scholar 

  100. Souness RJ, Kleffmann T, Tchesnokov EP, Wilbanks SM, Jameson GB, Jameson GN (2013) Biochemistry 52:7606–7617

    CAS  PubMed  Article  Google Scholar 

  101. Hohenberger J, Ray K, Meyer K (2012) Nat Commun 3:720

    PubMed  Article  CAS  Google Scholar 

  102. Bassan A, Blomberg MR, Siegbahn PE, Que L Jr (2005) Angew Chem Int Ed Engl 44:2939–2941

    CAS  PubMed  Article  Google Scholar 

  103. Costas M, Tipton AK, Chen K, Jo DH, Que L Jr (2001) J Am Chem Soc 123:6722–6723

    CAS  PubMed  Article  Google Scholar 

  104. Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Muller DJ, Fotiadis D (2016) Angew Chem Int Ed Engl 55:8846–8849

    CAS  PubMed  Article  Google Scholar 

  105. Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y, Kim J, Soll D, Lee HY, Park HS (2016) Science 354:623–626

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Bose JL (2016) Methods Mol Biol 1373:111–115

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The research in our laboratory is supported by the National Science Foundation Grants CHE-1623856 and MCB-0843537, the National Institutes of Health Grants GM107529, GM108988, and MH107985, and the Lutcher Brown Distinguished Chair Endowment fund. We thank Professors Lawrence Que, Jr. and John Lipscomb for helpful discussions of the catalytic mechanisms and editing of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J Biol Inorg Chem 22, 395–405 (2017). https://doi.org/10.1007/s00775-017-1436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1436-5

Keywords

  • Catalytic strategies
  • Crystal structure
  • High-valent iron species
  • Metabolism
  • Nonheme iron enzymes
  • Oxidative degradation
  • Reactive oxygen species
  • Ring-cleaving dioxygenase
  • Spectroscopy