Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics

  • Yifan Wang
  • Jiasong Li
  • Aimin Liu
Part of the following topical collections:
  1. 60 Years of Oxygen Activation


Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?

Graphical Abstract


Catalytic strategies Crystal structure High-valent iron species Metabolism Nonheme iron enzymes Oxidative degradation Reactive oxygen species Ring-cleaving dioxygenase Spectroscopy 



The research in our laboratory is supported by the National Science Foundation Grants CHE-1623856 and MCB-0843537, the National Institutes of Health Grants GM107529, GM108988, and MH107985, and the Lutcher Brown Distinguished Chair Endowment fund. We thank Professors Lawrence Que, Jr. and John Lipscomb for helpful discussions of the catalytic mechanisms and editing of the text.


  1. 1.
    Hayaishi O, Katagiri M, Rothberg S (1955) J Am Chem Soc 77:5450–5451CrossRefGoogle Scholar
  2. 2.
    Mason HS, Fowlks WL, Peterson E (1955) J Am Chem Soc 77:2914–2915CrossRefGoogle Scholar
  3. 3.
    Hayaishi O (2008) J Biol Chem 283:19165–19175PubMedCrossRefGoogle Scholar
  4. 4.
    Hayaishi O, Rothberg S, Mehler AH, Saito Y (1957) J Biol Chem 229:889–896PubMedGoogle Scholar
  5. 5.
    Geng J, Liu A (2014) Arch Biochem Biophys 544:18–26PubMedCrossRefGoogle Scholar
  6. 6.
    Raven EL (2017) J Biol Inorg Chem. doi: 10.1007/s00775-016-1412-5 Google Scholar
  7. 7.
    Kal S, Que L Jr (2017) J Biol Inorg Chem. doi: 10.1007/s00775-016-1431-2 PubMedGoogle Scholar
  8. 8.
    Proshlyakov DA, John CW, McKracken C, Hausinger RP (2017) J Biol Inorg Chem. doi: 10.1007/s00775-016-1406-3 Google Scholar
  9. 9.
    Gibson DT and Subramanian V (1984) In: Gibson DT (ed). Microbial degradation of organic compounds, Marcel Dekker, Inc., New YorkGoogle Scholar
  10. 10.
    Seo JS, Keum YS, Li QX (2009) Int J Environ Res Public Health 6:278–309PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042PubMedCrossRefGoogle Scholar
  12. 12.
    Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) J Biol Chem 276:1945–1953PubMedCrossRefGoogle Scholar
  13. 13.
    Uhlin U, Eklund H (1994) Nature 370:533–539PubMedCrossRefGoogle Scholar
  14. 14.
    Nordlund P, Eklund H (1993) J Mol Biol 232:123–164PubMedCrossRefGoogle Scholar
  15. 15.
    Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586PubMedCrossRefGoogle Scholar
  16. 16.
    Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) J Mol Biol 296:701–712PubMedCrossRefGoogle Scholar
  17. 17.
    Pavel EG, Martins LJ, Ellis WR, Solomon EI (1994) Chem Biol 1:173–183PubMedCrossRefGoogle Scholar
  18. 18.
    Yang TC, Wolfe MD, Neibergall MB, Mekmouche Y, Lipscomb JD, Hoffman BM (2003) J Am Chem Soc 125:7056–7066PubMedCrossRefGoogle Scholar
  19. 19.
    Martins BM, Svetlitchnaia T, Dobbek H (2005) Structure 13:817–824PubMedCrossRefGoogle Scholar
  20. 20.
    Ohta T, Chakrabarty S, Lipscomb JD, Solomon EI (2008) J Am Chem Soc 130:1601–1610PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD (2015) Biochemistry 54:4652–4664PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H (2012) BMC Struct Biol 12:15PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Neibergall MB, Stubna A, Mekmouche Y, Münck E, Lipscomb JD (2007) Biochemistry 46:8004–8016PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bugg TDH, Ramaswamy S (2008) Curr Opin Chem Biol 12:134–140PubMedCrossRefGoogle Scholar
  25. 25.
    Tarasev M, Rhames F, Ballou DP (2004) Biochemistry 43:12799–12808PubMedCrossRefGoogle Scholar
  26. 26.
    Tarasev M, Ballou DP (2005) Biochemistry 44:6197–6207PubMedCrossRefGoogle Scholar
  27. 27.
    Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A (2011) J Biol Chem 286:26541–26554PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Geng J, Dornevil K, Liu A (2012) J Am Chem Soc 134:12209–12218PubMedCrossRefGoogle Scholar
  29. 29.
    Chen K, Que L Jr (2001) J Am Chem Soc 123:6327–6337PubMedCrossRefGoogle Scholar
  30. 30.
    Chen K, Costas M, Kim J, Tipton AK, Que L Jr (2002) J Am Chem Soc 124:3026–3035PubMedCrossRefGoogle Scholar
  31. 31.
    Oloo WN, Fielding AJ, Que L Jr (2013) J Am Chem Soc 135:6438–6441PubMedCrossRefGoogle Scholar
  32. 32.
    Prat I, Mathieson JS, Guell M, Ribas X, Luis JM, Cronin L, Costas M (2011) Nat Chem 3:788–793PubMedCrossRefGoogle Scholar
  33. 33.
    Lyakin OY, Prat I, Bryliakov KP, Costas M, Talsi EP (2012) Catal Commun 29:105–108CrossRefGoogle Scholar
  34. 34.
    Olivo G, Cusso O, Borrell M, Costas M (2017) J Biol Inorg Chem. doi: 10.1007/s00775-016-1434-z PubMedGoogle Scholar
  35. 35.
    Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) B. Fungal Genet Biol 27:175–185PubMedCrossRefGoogle Scholar
  36. 36.
    Ruiz-Duenas FJ, Martinez AT (2009) Microb Biotechnol 2:164–177PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hayaishi O, Hashimoto K (1950) J Biochem (Tokyo) 37:71CrossRefGoogle Scholar
  38. 38.
    Hayaishi O, Katagiri M, Rothberg S (1957) J Biol Chem 229:905–920PubMedGoogle Scholar
  39. 39.
    Stanier RY, Ingraham JL (1954) J Biol Chem 210:799–808PubMedGoogle Scholar
  40. 40.
    Hayaishi O (1966) Bacteriol Rev 30:720–731PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dagley S, Evans WC, Ribbons DW (1960) Nature 188:560–566PubMedCrossRefGoogle Scholar
  42. 42.
    Kojima Y, Itada N, Hayaishi O (1961) J Biol Chem 236:2223–2228PubMedGoogle Scholar
  43. 43.
    Adachi K, Takeda Y, Senoh S, Kita H (1964) Biochim Biophys Acta 93:483–493PubMedCrossRefGoogle Scholar
  44. 44.
    Lipscomb JD (2008) Curr Opin Struct Biol 18:644–649PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Acc Chem Res 40:475–483PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Vaillancourt FH, Bolin JT, Eltis LD (2006) Crit Rev Biochem Mol Biol 41:241–267PubMedCrossRefGoogle Scholar
  47. 47.
    Abu-Omar MM, Loaiza A, Hontzeas N (2005) Chem Rev 105:2227–2252PubMedCrossRefGoogle Scholar
  48. 48.
    Bugg TDH (2003) Tetrahedron 59:7075–7101CrossRefGoogle Scholar
  49. 49.
    Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349PubMedCrossRefGoogle Scholar
  50. 50.
    Broderick JB (1999) Essays Biochem 34:173–189PubMedCrossRefGoogle Scholar
  51. 51.
    Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624PubMedCrossRefGoogle Scholar
  52. 52.
    Spence EL, Kawamukai M, Sanvoisin J, Braven H, Bugg TD (1996) J Bacteriol 178:5249–5256PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Eltis LD, Bolin JT (1996) J Bacteriol 178:5930–5937PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT (1995) Science 270:976–980PubMedCrossRefGoogle Scholar
  55. 55.
    Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y (1996) J Mol Biol 255:735–752PubMedCrossRefGoogle Scholar
  56. 56.
    Dunwell JM (1998) Biotechnol Genet Eng Rev 15:1–32PubMedCrossRefGoogle Scholar
  57. 57.
    Khuri S, Bakker FT, Dunwell JM (2001) Mol Biol Evol 18:593–605PubMedCrossRefGoogle Scholar
  58. 58.
    Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Trends Biochem Sci 26:740–746PubMedCrossRefGoogle Scholar
  59. 59.
    Fetzner S (2012) Appl Environ Microbiol 78:2505–2514PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, Begley TP (2005) Biochemistry 44:7623–7631PubMedCrossRefGoogle Scholar
  61. 61.
    Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, Liu A (2015) J Biol Chem 290:15621–15634PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang Y, Colabroy KL, Begley TP, Ealick SE (2005) Biochemistry 44:7632–7643PubMedCrossRefGoogle Scholar
  63. 63.
    Bugg TDH, Lin G (2001) Chem Commun 11:941–952CrossRefGoogle Scholar
  64. 64.
    Kovaleva EG, Lipscomb JD (2007) Science 316:453–457PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kovaleva EG, Lipscomb JD (2008) Biochemistry 47:11168–11170PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Münck E, Lipscomb JD (2010) Proc Natl Acad Sci USA 107:16788–16793PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188PubMedCrossRefGoogle Scholar
  68. 68.
    Mbughuni MM, Chakrabarti M, Hayden JA, Meier KK, Dalluge JJ, Hendrich MP, Münck E, Lipscomb JD (2011) Biochemistry 50:10262–10274PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kovaleva EG, Lipscomb JD (2012) Biochemistry 51:8755–8763PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mbughuni MM, Meier KK, Münck E, Lipscomb JD (2012) Biochemistry 51:8743–8754PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hegg EL, Que L Jr (1997) Eur J Biochem 250:625–629PubMedCrossRefGoogle Scholar
  72. 72.
    Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Arciero DM, Lipscomb JD (1986) J Biol Chem 261:2170–2178PubMedGoogle Scholar
  74. 74.
    Jeoung JH, Bommer M, Lin TY, Dobbek H (2013) Proc Natl Acad Sci USA 110:12625–12630PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932PubMedCrossRefGoogle Scholar
  76. 76.
    Deeth RJ, Bugg TDH (2003) J Biol Inorg Chem 8:409–418PubMedGoogle Scholar
  77. 77.
    Christian GJ, Ye S, Neese F (2012) Chem Sci 3:1600–1611CrossRefGoogle Scholar
  78. 78.
    Dong G, Shaik S, Lai W (2013) Chem Sci 4:3624–3635CrossRefGoogle Scholar
  79. 79.
    Sanvoisin J, Langley GJ, Bugg TDH (1995) J Am Chem Soc 117:7836–7837CrossRefGoogle Scholar
  80. 80.
    Xin M, Bugg TD (2008) J Am Chem Soc 130:10422–10430PubMedCrossRefGoogle Scholar
  81. 81.
    Borowski T, Wojcik A, Milaczewska A, Georgiev V, Blomberg MRA, Siegbahn PEM (2012) J Biol Inorg Chem 17:881–890PubMedCrossRefGoogle Scholar
  82. 82.
    Mendel S, Arndt A, Bugg TDH (2004) Biochemistry 43:13390–13396PubMedCrossRefGoogle Scholar
  83. 83.
    Ohlendorf DH, Lipscomb JD, Weber PC (1988) Nature 336:403–405PubMedCrossRefGoogle Scholar
  84. 84.
    Orville AM, Elango N, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10039–10051PubMedCrossRefGoogle Scholar
  85. 85.
    Orville AM, Lipscomb JD, Ohlendorf DH (1997) Biochemistry 36:10052–10066PubMedCrossRefGoogle Scholar
  86. 86.
    Davis MI, Wasinger EC, Decker A, Pau MYM, Vaillancourt FH, Bolin JT, Eltis LD, Hedman B, Hodgson KO, Solomon EI (2003) J Am Chem Soc 125:11214–11227PubMedCrossRefGoogle Scholar
  87. 87.
    Knoot CJ, Purpero VM, Lipscomb JD (2015) Proc Natl Acad Sci USA 112:388–393PubMedCrossRefGoogle Scholar
  88. 88.
    Pau MY, Lipscomb JD, Solomon EI (2007) Proc Natl Acad Sci USA 104:18355–18362PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Que L Jr, Lipscomb JD, Münck E, Wood JM (1977) Biochim Biophys Acta 485:60–74PubMedCrossRefGoogle Scholar
  90. 90.
    Schlosrich J, Eley KL, Crowley PJ, Bugg TDH (2006) ChemBioChem 7:1899–1908PubMedCrossRefGoogle Scholar
  91. 91.
    Groce SL, Lipscomb JD (2003) J Am Chem Soc 125:11780–11781PubMedCrossRefGoogle Scholar
  92. 92.
    Simmons CR, Krishnamoorthy K, Granett SL, Schuller DJ, Dominy JE Jr, Begley TP, Stipanuk MH, Karplus PA (2008) Biochemistry 47:11390–11392PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) J Biol Chem 282:25189–25198PubMedCrossRefGoogle Scholar
  94. 94.
    Richerson RB, Ziegler DM (1987) Methods Enzymol 143:410–415PubMedCrossRefGoogle Scholar
  95. 95.
    Bruland N, Wubbeler JH, Steinbuchel A (2009) J Biol Chem 284:660–672PubMedCrossRefGoogle Scholar
  96. 96.
    Tchesnokov EP, Fellner M, Siakkou E, Kleffmann T, Martin LW, Aloi S, Lamont IL, Wilbanks SM, Jameson GN (2015) J Biol Chem 290:24424–24437PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Pierce BS, Subedi BP, Sardar S, Crowell JK (2015) Biochemistry 54:7477–7490PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Driggers CM, Cooley RB, Sankaran B, Hirschberger LL, Stipanuk MH, Karplus PA (2013) J Mol Biol 425:3121–3136PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kumar D, Thiel W, de Visser SP (2011) J Am Chem Soc 133:3869–3882PubMedCrossRefGoogle Scholar
  100. 100.
    Souness RJ, Kleffmann T, Tchesnokov EP, Wilbanks SM, Jameson GB, Jameson GN (2013) Biochemistry 52:7606–7617PubMedCrossRefGoogle Scholar
  101. 101.
    Hohenberger J, Ray K, Meyer K (2012) Nat Commun 3:720PubMedCrossRefGoogle Scholar
  102. 102.
    Bassan A, Blomberg MR, Siegbahn PE, Que L Jr (2005) Angew Chem Int Ed Engl 44:2939–2941PubMedCrossRefGoogle Scholar
  103. 103.
    Costas M, Tipton AK, Chen K, Jo DH, Que L Jr (2001) J Am Chem Soc 123:6722–6723PubMedCrossRefGoogle Scholar
  104. 104.
    Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Muller DJ, Fotiadis D (2016) Angew Chem Int Ed Engl 55:8846–8849PubMedCrossRefGoogle Scholar
  105. 105.
    Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y, Kim J, Soll D, Lee HY, Park HS (2016) Science 354:623–626PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bose JL (2016) Methods Mol Biol 1373:111–115PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations