A personal perspective on the discovery of dioxygen adducts of copper and iron by Nobumasa Kitajima

Commentary
Part of the following topical collections:
  1. 60 Years of Oxygen Activation

Abstract

Abstract

Transition metal–dioxygen complexes have fascinated bioinorganic and inorganic chemists for over half a century. The late Nobumasa Kitajima was one of the very successful researchers in this field. Despite his short career (40 years old), he made many important contributions. This Commentary highlights his important accomplishments and how they have impacted subsequent work in this area.

Graphical Abstract

Keywords

Copper Dioxygen X-ray structure Hydrotris(pyrazolyl)borate Model complex 

Abbreviations

bppa

Bis(6-pivalamide-2-pyridylmethyl)(2-pyridylmethyl)amine

3,5-iPr2pzH

3,5-Diisopropyl-1-pyrazole

N-Et-HPTB

N, N, N’, N’-tetrakis(1-ethylbenzimidazolyl-2-methyl)-1,3-diamino-2-propanol

L0

Hydrotris(3,5-dimethyl-1-pyrazolyl)borate anion

L1

Hydrotris(3,5-diisopropyl-1-pyrazolyl)borate)borate anion

L3

Hydrotris(3-tertialy butyl-5-isoporpyl-1-pyrazolyl)borate anion

L5

Hydrotris(3,5-diphenyl-1-pyrazolyl)borate anion

L10

Hydrotris(3-adamantyl-5-isoporpyl-1-pyrazolyl)borate anion

mCPBA

m-chloroperbenzoic acid

oxyhemocyanin

Oxygenated hemocyanin

PhIO

Iodosylbenzene

Ph-bimp

2.6-Bis[bis{2-(1-methyl-4,5-diphenylimidazolyl)methyl}aminomethyl]-4-methylphenolate

TMG3tren

1,1,1-Tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine

Tp

Hydrotris(pyrazolyl)borate

TPA

Tris{(2-pyridyl)methyl}amine

XYL–O–

α,α’-Bis{N, N-bis(2-pyridylethyl)amino}-m-xylene-2-olate

References

  1. 1.
    Hayaishi O, Coon MJ, Estabrook RW, Que L, Jr, Yamamoto S (eds) (2005) Special issue: Celebrating 50 years of oxygenases. Biochem Biophys Res Communs 338: 1–686Google Scholar
  2. 2.
    Mason HS, Fowlks WL, Peterson E (1955) J Am Chem Soc 77:2914–2915CrossRefGoogle Scholar
  3. 3.
    Hayaishi O, Katagiri M, Rothberg S (1955) J Am Chem Soc 77:5450–5451CrossRefGoogle Scholar
  4. 4.
    Trofimenko S (1999) Scorpionates—the coordination chemistry of polypyrazolyborate ligands. Imperial College Press, LondonCrossRefGoogle Scholar
  5. 5.
    Pettinari C (2008) Scorpionates II: chelating borate ligands. Imperial College Press, LondonCrossRefGoogle Scholar
  6. 6.
    Trofimenko S (1966) J Am Chem Soc 88:1842–1844CrossRefGoogle Scholar
  7. 7.
    Yap GPA, Fujisawa K (eds) (2016) Special issue: Scorpionates: a golden anniversary celebrating the 50th anniversary of Swiatoslaw ‘Jerry’ Trofimenko’s seminal paper on scorpionates. Acta Crystallogr Sect C Struct Chem C72: 766–856Google Scholar
  8. 8.
    Calabrese JC, Trofimenko S, Thmpson JS (1986) J Chem Soc Chem Commun 1122–1123.Google Scholar
  9. 9.
    Trofimenko S, Calabrese JC, Thmpson JS (1987) Inorg Chem 26:1507–1514CrossRefGoogle Scholar
  10. 10.
    Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y (1989) Chem Lett 18:421–424CrossRefGoogle Scholar
  11. 11.
    Magnus KA, Ton-That H, Carpenter JE (1994) Chem Rev 94:727–735CrossRefGoogle Scholar
  12. 12.
    Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314CrossRefPubMedGoogle Scholar
  13. 13.
    Decker H, Tuczek F (2000) Trends Biochem Sci 25:392–397CrossRefPubMedGoogle Scholar
  14. 14.
    Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191CrossRefPubMedGoogle Scholar
  15. 15.
    Jaenicke E, Decker H (2004) ChemBioChem 5:163–169CrossRefPubMedGoogle Scholar
  16. 16.
    Bento I, Carrondo MA, Lindley PF (2006) J Biol Inorg Chem 11:539–547CrossRefPubMedGoogle Scholar
  17. 17.
    Markl J (2013) Biochim Biophys Acta Proteins Proteom 1834:1840–1852CrossRefGoogle Scholar
  18. 18.
    Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Chem Rev 114:3659–3853CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ (1984) Nature 309:23–29CrossRefGoogle Scholar
  20. 20.
    Gaykema WPJ, Volbeda A, Hol WGJ (1986) J Mol Biol 187:255–275CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson JS (1984) J Am Chem Soc 106:4057–4059CrossRefGoogle Scholar
  22. 22.
    Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) J Am Chem Soc 106:3372–3374CrossRefGoogle Scholar
  23. 23.
    Pate JE, Cruse RW, Karlin KD, Solomon EI (1987) J Am Chem Soc 109:2624–2630CrossRefGoogle Scholar
  24. 24.
    Kitajima N, Koda T, Moro-oka Y (1988) Chem Lett 17:347–350CrossRefGoogle Scholar
  25. 25.
    Kitajima N, Koda T, Hashimoto S, Kitagawa T, Moro-oka Y (1988) J Chem Soc Chem Commun 151–152Google Scholar
  26. 26.
    Kitajima N, Koda T, Iwata Y, Moro-oka Y (1990) J Am Chem Soc 112:8833–8839CrossRefGoogle Scholar
  27. 27.
    Kitajima N, Koda T, Hashimoto S, Kitagawa T, Moro-oka Y (1991) J Am Chem Soc 113:5664–5671CrossRefGoogle Scholar
  28. 28.
    Kitajima N, Moro-oka Y (1994) Chem Rev 94:737–757CrossRefGoogle Scholar
  29. 29.
    Kitajima N, Fujisawa K, Moro-oka Y, Toriumi K (1989) J Am Chem Soc 111:8975–8976CrossRefGoogle Scholar
  30. 30.
    Kitajima K, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291CrossRefGoogle Scholar
  31. 31.
    Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI (1992) J Am Chem Soc 114:10421–10431CrossRefGoogle Scholar
  32. 32.
    Jacobson RR, Tyeklár Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) J Am Chem Soc 110:3690–3692CrossRefGoogle Scholar
  33. 33.
    Baldwin MJ, Ross PK, Pate JE, Tyeklár Z, Karlin KD, Solomon EI (1991) J Am Chem Soc 113:8671–8679CrossRefGoogle Scholar
  34. 34.
    Tyeklár Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) J Am Chem Soc 115:2677–2869CrossRefGoogle Scholar
  35. 35.
    Kitajima N, Fujisawa K, Moro-oka Y (1990) Inorg Chem 29:357–358CrossRefGoogle Scholar
  36. 36.
    Kitajima N, Katayama T, Fujisawa K, Moro-oka Y (1993) J Am Chem Soc 115:7872–7873CrossRefGoogle Scholar
  37. 37.
    Chen P, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:10177–10193CrossRefGoogle Scholar
  38. 38.
    Kitajima N, Fujisawa K, Tanaka M, Moro-oka Y (1992) J Am Chem Soc 114:9232–9233CrossRefGoogle Scholar
  39. 39.
    Randall DW, George SD, Hedman B, Hodgson KO, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:11620–11631CrossRefGoogle Scholar
  40. 40.
    Basumallick L, George SD, Randall DW, Hedman B, Hodgson KO, Fujisawa K, Solomon EI (2002) Inorg Chim Acta 337:357–365CrossRefGoogle Scholar
  41. 41.
    Fujisawa K, Fujita K, Takahashi T, Kitajima N, Moro-oka Y, Matsunaga Y, Miyashita Y, Okamoto K (2004) Inorg Chem Commun 7:1188–1190CrossRefGoogle Scholar
  42. 42.
    Matsunaga Y, Fujisawa K, Ibi N, Miyashita Y, Okamoto K (2005) Inorg Chem 44:325–335CrossRefPubMedGoogle Scholar
  43. 43.
    Gorelsky SI, Basumallick L, Vura-Weis J, Sarangi R, Hodgson KO, Hedman B, Fujisawa K, Solomon EI (2005) Inorg Chem 44:4947–4960CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kitajima N, Fujisawa K, Koda T, Hikichi S, Moro-oka Y (1990) J Chem Soc Chem Commun 1357–1358Google Scholar
  45. 45.
    Fujisawa K, Moro-oka Y, Kitajima N (1994) J Chem Soc Chem Commun 623–624Google Scholar
  46. 46.
    Chen P, Fujisawa K, Helton ME, Karlin KD, Solomon EI (2003) J Am Chem Soc 125:6394–6408CrossRefPubMedGoogle Scholar
  47. 47.
    Ross PK, Solomon EI (1990) J Am Chem Soc 112:5871–5872CrossRefGoogle Scholar
  48. 48.
    Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080CrossRefGoogle Scholar
  49. 49.
    Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466–474CrossRefPubMedGoogle Scholar
  50. 50.
    Fujisawa K, Ono T, Ishikawa Y, Amir N, Miyashita Y, Okamoto K, Lehnert N (2006) Inorg Chem 45:1698–1713CrossRefPubMedGoogle Scholar
  51. 51.
    Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Angew Chem Int Ed 45:3867–3869CrossRefGoogle Scholar
  52. 52.
    Fujisawa K, Kobayashi T, Fujita K, Kitajima N, Moro-oka Y, Miyashita Y, Yamada Y, Okamoto K (2000) Bull Chem Soc Jpn 73:1797–1804CrossRefGoogle Scholar
  53. 53.
    Wada A, Harata M, Hasegawa K, Jitsukawa K, Masuda H, Mukai M, Kitagawa T, Einaga H (1998) Angew Chem Int Ed 37:798–799CrossRefGoogle Scholar
  54. 54.
    Kitajima N, Fukui H, Moro-oka Y (1990) J Am Chem Soc 112:6402–6403CrossRefGoogle Scholar
  55. 55.
    Kitajima N, Tamura N, Amagai H, Fukui H, Moro-oka Y, Mizutani Y, Kitagawa T, Mathur R, Heerwegh K, Reed CA, Randall CR, Que L Jr, Tatsumi K (1994) J Am Chem Soc 116:9071–9085CrossRefGoogle Scholar
  56. 56.
    Kim K, Lippard SJ (1996) J Am Chem Soc 118:4914–4915CrossRefGoogle Scholar
  57. 57.
    Ookubo T, Sugimoto H, Nagayama T, Masuda H, Sato T, Tanaka K, Maeda Y, Ōkawa H, Hayashi Y, Uehara A, Suzuki M (1996) J Am Chem Soc 118:701–702CrossRefGoogle Scholar
  58. 58.
    Dong Y, Yan S, Young VG Jr, Que L Jr (1996) Angew Chem Int Ed 35:618–620CrossRefGoogle Scholar
  59. 59.
    Brunold TC, Tamura N, Kitajima N, Moro-oka Y, Solomon EI (1998) J Am Chem Soc 120:5674–5690CrossRefGoogle Scholar
  60. 60.
    Kitajima N, Singh UP, Amagai H, Osawa M, Moro-oka Y (1991) J Am Chem Soc 113:7757–7758CrossRefGoogle Scholar
  61. 61.
    Kitajima N, Osawa M, Tanaka M, Moro-oka Y (1991) J Am Chem Soc 113:8952–8953CrossRefGoogle Scholar
  62. 62.
    Kitajima N, Komatsuzaki H, Hikichi S, Moro-oka Y (1994) J Am Chem Soc 116:11596–11597CrossRefGoogle Scholar
  63. 63.
    Lehnert N, Fujisawa K, Solomon EI (2003) Inorg Chem 42:469–481CrossRefPubMedGoogle Scholar
  64. 64.
    Sarangi R, Aboelella N, Fujisawa K, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2006) J Am Chem Soc 128:8286–8296CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sarangi R, York JT, Helton ME, Fujisawa K, Karlin KD, Tolman WB, Hodgson KO, Hedman B, Solomon EI (2008) J Am Chem Soc 130:676–686CrossRefPubMedGoogle Scholar
  66. 66.
    Ghosh S, Cirera J, Vance MA, Ono T, Fujisawa K, Solomon EI (2008) J Am Chem Soc 130:16262–16273CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Qayyum MF, Sarangi R, Fujisawa K, Stack TDP, Karlin KD, Hodgson KO, Hedman B, Solomon EI (2013) J Am Chem Soc 135:17417–17431CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mehn MP, Fujisawa K, Hegg EL, Que L Jr (2003) J Am Chem Soc 125:7828–7842CrossRefPubMedGoogle Scholar
  69. 69.
    Shan X, Rohde JU, Koehntop KD, Zhou Y, Bukowski MR, Costas M, Fujisawa K, Que L Jr (2007) Inorg Chem 46:8410–8417CrossRefPubMedGoogle Scholar
  70. 70.
    Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L Jr (2010) Inorg Chem 49:3618–3628CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fujisawa K, Lehnert N, Ishikawa Y, Okamoto K (2004) Angew Chem Int Ed 43:4944–4947CrossRefGoogle Scholar
  72. 72.
    Lehnert N, Cornelissen U, Neese F, Ono T, Noguchi Y, Okamoto K, Fujisawa K (2007) Inorg Chem 46:3916–3933CrossRefPubMedGoogle Scholar
  73. 73.
    Fujisawa K, Noguchi Y, Miyashita Y, Okamoto K, Lehnert N (2007) Inorg Chem 46:10607–10623CrossRefPubMedGoogle Scholar
  74. 74.
    Fujisawa K, Tateda A, Miyashita Y, Okamoto K, Paulat F, Praneeth VKK, Merkle A, Lehnert N (2008) J Am Chem Soc 130:1205–1213CrossRefPubMedGoogle Scholar
  75. 75.
    Paulat F, Lehnert N, Ishikawa Y, Okamoto K, Fujisawa K (2008) Inorg Chim Acta 361:901–915CrossRefGoogle Scholar
  76. 76.
    Fujisawa K, Noguchi N, Noguchi Y, Lehnert N (2013) Acta Cryst C69:943–946Google Scholar
  77. 77.
    Soma S, Stappen CV, Kiss M, Szilagyi RK, Lehnert N, Fujisawa K (2016) J Biol Inorg Chem 21:757–775CrossRefPubMedGoogle Scholar
  78. 78.
    Takisawa H, Morishima Y, Soma S, Szilagyi RK, Fujisawa K (2014) Inorg Chem 53:8191–8193CrossRefPubMedGoogle Scholar
  79. 79.
    Fujisawa K, Kuboniwa A, Kiss M, Szilagyi RK (2016) Acta Cryst C72:768–776Google Scholar
  80. 80.
    Fujisawa K, Shimizu M, Szilagyi RK (2016) Acta Cryst C72:786–790Google Scholar

Copyright information

© SBIC 2017

Authors and Affiliations

  1. 1.Department of ChemistryIbaraki UniversityMitoJapan

Personalised recommendations