Skip to main content

High-valent copper in biomimetic and biological oxidations

Abstract

A long-standing debate in the Cu–O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu–O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.

This is a preview of subscription content, access via your institution.

Fig. 1

(modified from Mirica et al. [18])

Fig. 2
Fig. 3
Fig. 4

Adapted from Hanss et al. [55]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Mason HS, Fowlks WL, Peterson E (1955) J Am Chem Soc 77:2914–2915

    CAS  Article  Google Scholar 

  2. 2.

    Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Chem Rev 114:3659–3853

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanović-Burmazović I, Wasinger EC, Stack TDP, Herres-Pawlis S (2013) Angew Chem Int Ed 52:5398–5401

    CAS  Article  Google Scholar 

  6. 6.

    Esguerra KVN, Fall Y, Lumb JP (2014) Angew Chem Int Ed 53:5877–5881

    CAS  Article  Google Scholar 

  7. 7.

    Xu B, Lumb J-P, Arndtsen BA (2015) Angew Chem Int Ed 54:4208–4211

    CAS  Article  Google Scholar 

  8. 8.

    Hoover JM, Steves JE, Stahl SS (2012) Nat Protocols 7:1161–1166

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wurtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Angew Chem Int Ed 45:3867–3869

    Article  CAS  Google Scholar 

  10. 10.

    Fujisawa K, Tanaka M, Moro-Oka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080

    CAS  Article  Google Scholar 

  11. 11.

    Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB (2002) J Am Chem Soc 124:10660–10661

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB (2004) J Am Chem Soc 126:16896–16911

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Dalle KE, Gruene T, Dechert S, Demeshko S, Meyer F (2014) J Am Chem Soc 136:7428–7434

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Jacobson RR, Tyeklár Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) J Am Chem Soc 110:3690–3692

    CAS  Article  Google Scholar 

  15. 15.

    Kitajima N, Fujisawa K, Moro-Oka Y, Toriumi K (1989) J Am Chem Soc 111:8975–8976

    CAS  Article  Google Scholar 

  16. 16.

    Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG, Que L, Zuberbuhler AD, Tolman WB (1996) Science 271:1397–1400

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Cole AP, Root DE, Mukherjee P, Solomon EI, Stack TDP (1996) Science 273:1848–1850

    PubMed  Article  Google Scholar 

  18. 18.

    Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Science 308:1890–1892

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Stack TDP (2003) Dalton Trans 10:1881–1889

    Article  Google Scholar 

  20. 20.

    Itoh S (2015) Acc Chem Res 48:2066–2074

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Citek C, Lin B-L, Phelps TE, Wasinger EC, Stack TDP (2014) J Am Chem Soc 136:14405–14408

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Citek C, Gary JB, Wasinger EC, Stack TDP (2015) J Am Chem Soc 137:6991–6994

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Gary JB, Citek C, Brown TA, Zare RN, Wasinger EC, Stack TDP (2016) J Am Chem Soc 138:9986–9995

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Cramer CJ, Tolman WB (2007) Acc Chem Res 40:601–608

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. 25.

    Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Florke U, Henkel G, Stack TDP (2009) J Am Chem Soc 131:1154–1169

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Cahoy J, Holland PL, Tolman WB (1999) Inorg Chem 38:2161–2168

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI (2009) J Am Chem Soc 131:6421–6438

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  28. 28.

    Kieber-Emmons MT, Ginsbach JW, Wick PK, Lucas HR, Helton ME, Lucchese B, Suzuki M, Zuberbühler AD, Karlin KD, Solomon EI (2014) Angew Chem Int Ed 53:4935–4939

    CAS  Article  Google Scholar 

  29. 29.

    Henson MJ, Mukherjee P, Root DE, Stack TDP, Solomon EI (1999) J Am Chem Soc 121:10332–10345

    CAS  Article  Google Scholar 

  30. 30.

    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci 106:18908–18913

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. 31.

    Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442

    CAS  Article  Google Scholar 

  32. 32.

    DuBois JL, Mukherjee P, Collier AM, Mayer JM, Solomon EI, Hedman B, Stack TDP, Hodgson KO (1997) J Am Chem Soc 119:8578–8579

    CAS  Article  Google Scholar 

  33. 33.

    DuBois JL, Mukherjee P, Stack TDP, Hedman B, Solomon EI, Hodgson KO (2000) J Am Chem Soc 122:5775–5787

    CAS  Article  Google Scholar 

  34. 34.

    Itoh S, Fukuzumi S (2007) Acc Chem Res 40:592–600

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Garcia-Bosch I, Cowley RE, Díaz DE, Siegler MA, Nam W, Solomon EI, Karlin KD (2016) Chem A Eur J 22:5133–5137

    CAS  Article  Google Scholar 

  36. 36.

    Paul PP, Tyeklar Z, Jacobson RR, Karlin KD (1991) J Am Chem Soc 113:5322–5332

    CAS  Article  Google Scholar 

  37. 37.

    Citek C, Lyons CT, Wasinger EC, Stack TDP (2012) Nat Chem 4:317–322

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Garcia-Bosch I, Company A, Frisch JR, Torrent-Sucarrat M, Cardellach M, Gamba I, Guell M, Casella L, Que L, Ribas X, Luis JM, Costas M (2010) Angew Chem Int Ed 49:2406–2409

    CAS  Article  Google Scholar 

  39. 39.

    Chiang L, Keown W, Citek C, Wasinger EC, Stack TDP (2016) Angew Chem Int Ed 55:10453–10457

    CAS  Article  Google Scholar 

  40. 40.

    Company A, Palavicini S, Garcia-Bosch I, Mas-Balleste R, Que L, Rybak-Akimova EV, Casella L, Ribas X, Costas M (2008) Chem Eur J 14:3535–3538

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Serrano-Plana J, Garcia-Bosch I, Miyake R, Costas M, Company A (2014) Angew Chem Int Ed 53:9608–9612

    CAS  Article  Google Scholar 

  42. 42.

    Taki M, Teramae S, Nagatomo S, Tachi Y, Kitagawa T, Itoh S, Fukuzumi S (2002) J Am Chem Soc 124:6367–6377

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Gupta AK, Tolman WB (2012) Inorg Chem 51:1881–1888

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Mukherjee P (2000) Stanford University, PhD Thesis

  45. 45.

    Jones SM, Solomon EI (2015) Cell Mol Life Sci 72:869–883

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Deming RL, Allred AL, Dahl AR, Herlinger AW, Kestner MO (1976) J Am Chem Soc 98:4132–4137

    CAS  Article  Google Scholar 

  47. 47.

    Bossu FP, Chellappa KL, Margerum DW (1977) J Am Chem Soc 99:2195–2203

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    McDonald MR, Scheper WM, Lee HD, Margerum DW (1995) Inorg Chem 34:229–237

    CAS  Article  Google Scholar 

  49. 49.

    Donoghue PJ, Tehranchi J, Cramer CJ, Sarangi R, Solomon EI, Tolman WB (2011) J Am Chem Soc 133:17602–17605

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Dhar D, Tolman WB (2015) J Am Chem Soc 137:1322–1329

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. 51.

    Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Biochem Biophys Res Commun 288:1169–1174

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Huang WJ, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Structure 5:691–699

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Biochemistry 43:8038–8047

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Neupane KP, Shearer J (2006) Inorg Chem 45:10552–10566

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Hanss J, Beckmann A, Krüger H-J (1999) Eur J Inorg Chem 1999:163–172

  56. 56.

    Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Angew Chem Int Ed 43:4360–4363

    CAS  Article  Google Scholar 

  57. 57.

    Maiti D, Fry HC, Woertink JS, Vance MA, Solomon EI, Karlin KD (2007) J Am Chem Soc 129:264–265

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Spencer DJE, Aboelella NW, Reynolds AM, Holland PL, Tolman WB (2002) J Am Chem Soc 124:2108–2109

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Reynolds AM, Lewis EA, Aboelella NW, Tolman WB (2005) Chem Commun 2014–2016

  60. 60.

    Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed 40:4570–4590

    CAS  Article  Google Scholar 

  61. 61.

    Yamazaki S, Itoh S (2003) J Am Chem Soc 125:13034–13035

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Spuhler P, Holthausen MC (2003) Angew Chem Int Ed 42:5961–5965

    CAS  Article  Google Scholar 

  63. 63.

    Mahadevan V, Henson MJ, Solomon EI, Stack TDP (2000) J Am Chem Soc 122:10249–10250

    CAS  Article  Google Scholar 

  64. 64.

    Matsumoto T, Furutachi H, Kobino M, Tomii M, Nagatomo S, Tosha T, Osako T, Fujinami S, Itoh S, Kitagawa T, Suzuki M (2006) J Am Chem Soc 128:3874–3875

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Karlin KD, Wei N, Jung B, Kaderli S, Niklaus P, Zuberbühler AD (1993) J Am Chem Soc 115:9506–9514

    CAS  Article  Google Scholar 

  66. 66.

    Mahapatra S, Halfen J, Wilkinson E, Pan G, Cramer CJ, Que L Jr, Tolman WB (1995) J Am Chem Soc 117:8865–8866

    CAS  Article  Google Scholar 

  67. 67.

    Mahapatra S, Young VG, Kaderli S, Zuberbühler AD, Tolman WB (1997) Angew Chem Int Ed 36:130–133

    CAS  Article  Google Scholar 

  68. 68.

    Mahapatra S, Halfen JA, Tolman WB (1996) J Am Chem Soc 118:11575–11586

    CAS  Article  Google Scholar 

  69. 69.

    Cole AP, Mahadevan V, Mirica LM, Ottenwaelder X, Stack TDP (2005) Inorg Chem 44:7345–7364

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Mahadevan V, DuBois JL, Hedman B, Hodgson KO, Stack TDP (1999) J Am Chem Soc 121:5583–5584

    CAS  Article  Google Scholar 

  71. 71.

    Holland PL, Rodgers KR, Tolman WB (1999) Angew Chem Int Ed 38:1139–1142

    CAS  Article  Google Scholar 

  72. 72.

    Itoh S, Taki M, Nakao H, Holland PL, Tolman WB, Que L Jr, Fukuzumi S (2000) Angew Chem Int Ed 39:398–400

    CAS  Article  Google Scholar 

  73. 73.

    Thangavel A, Wieliczko M, Bacsa J, Scarborough CC (2013) Inorg Chem 52:13282–13287

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Herres-Pawlis S, Haase R, Verma P, Hoffmann A, Kang P, Stack TDP (2015) Eur J Inorg Chem 2015:5426–5436

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  75. 75.

    Walli A, Dechert S, Bauer M, Demeshko S, Meyer F (2014) Eur J Inorg Chem 2014:4660–4676

    CAS  Article  Google Scholar 

  76. 76.

    Itoh S, Tachi Y (2006) Dalton Trans 4531–4538

  77. 77.

    Karahalis GJ, Thangavel A, Chica B, Bacsa J, Dyer RB, Scarborough CC (2016) Inorg Chem 55:1102–1107

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Mahadevan V, Hou ZG, Cole AP, Root DE, Lal TK, Solomon EI, Stack TDP (1997) J Am Chem Soc 119:11996–11997

    CAS  Article  Google Scholar 

  79. 79.

    Ottenwaelder X, Rudd DJ, Corbett MC, Hodgson KO, Hedman B, Stack TDP (2006) J Am Chem Soc 128:9268–9269

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  80. 80.

    Mahadevan V (2001) Ph. D. Thesis, Stanford University

  81. 81.

    Taki M, Itoh S, Fukuzumi S (2001) J Am Chem Soc 123:6203–6204

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Itoh S, Nakao H, Berreau LM, Kondo T, Komatsu M, Fukuzumi S (1998) J Am Chem Soc 120:2890–2899

    CAS  Article  Google Scholar 

  83. 83.

    Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Citek C, Herres-Pawlis S, Stack TDP (2015) Acc Chem Res 48:2424–2433

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Diaddario LL, Robinson WR, Margerum DW (1983) Inorg Chem 22:1021–1025

    CAS  Article  Google Scholar 

  86. 86.

    Liu C-C, Lin T-S, Chan SI, Mou C-Y (2015) J Catal 322:139–151

    CAS  Article  Google Scholar 

  87. 87.

    Mandal S, Mukherjee J, Lloret F, Mukherjee R (2012) Inorg Chem 51:13148–13161

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Chem Soc Rev 40:4077–4098

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Matsumoto T, Ohkubo K, Honda K, Yazawa A, Furutachi H, Fujinami S, Fukuzumi S, Suzuki M (2009) J Am Chem Soc 131:9258–9267

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Mukherjee S, Stull JA, Yano J, Stamatatos TC, Pringouri K, Stich TA, Abboud KA, Britt RD, Yachandra VK, Christou G (2012) Proc Natl Acad Sci 109:2257–2262

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  92. 92.

    Cuff ME, Miller KI, Vanholde KE, Hendrickson WA (1998) J Mol Biol 278:855–870

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Lionetti D, Day MW, Agapie T (2013) Chem Sci 4:785–790

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Machonkin T, Mukherjee P, Stack TDP, Solomon EI (2002) Inorg Chim Acta 341:39–44

    CAS  Article  Google Scholar 

  95. 95.

    Liu C-C, Mou C-Y, Yu SSF, Chan SI (2016) Energy Environ Sci 9:1361–1374

    CAS  Article  Google Scholar 

  96. 96.

    Chan SI, Lu Y-J, Nagababu P, Maji S, Hung M-C, Lee MM, Hsu IJ, Minh PD, Lai JCH, Ng KY, Ramalingam S, Yu SSF, Chan MK (2013) Angew Chem Int Ed 52:3731–3735

    CAS  Article  Google Scholar 

  97. 97.

    Karp DA, Gittis AG, Stahley MR, Fitch CA, Stites WE (2007) Biophys J 92:2041–2053

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Li L, Li C, Zhang Z, Alexov E (2013) J Chem Theory Comput 9:2126–2136

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  99. 99.

    Hamilton GA, Adolf PK, de Jersey J, DuBois GC, Dyrkacz GR, Libby RD (1978) J Am Chem Soc 100:1899–1912

    CAS  Article  Google Scholar 

  100. 100.

    Yoshizawa K, Kihara N, Kamachi T, Shiota Y (2006) Inorg Chem 45:3034–3041

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Aasa R, Brändén R, Deinum J, Malmström B, Reinhammar B, Vänngård T (1976) FEBS Lett 61:115–119

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Klinman JP (1996) Chem Rev 96:2541–2562

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Gherman BF, Heppner DE, Tolman WB, Cramer CJ (2006) J Biol Inorg Chem 11:197–205

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Hamilton GA, Libby RD, Hartzell CR (1973) Biochem Biophys Res Commun 55:333–340

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Whittaker MM, Whittaker JW (1988) J Biol Chem 263:6074–6080

    CAS  PubMed  Google Scholar 

  107. 107.

    Fujieda N, Yakiyama A, Itoh S (2010) Dalton Trans 39:3083–3092

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Solem E, Tuczek F, Decker H (2016) Angew Chem Int Ed 55:2884–2888

    CAS  Article  Google Scholar 

  109. 109.

    Kahn V, Ben-Shalom N (1998) Pigm Cell Res 11:24–33

    CAS  Article  Google Scholar 

  110. 110.

    Westerfeld WW (1940) Biochem J 34:51–58

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  111. 111.

    Mahadevan V, Gebbink RJMK, Stack TDP (2000) Curr Opin Chem Biol 4:228–234

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Muñoz-Muñoz JL, Berna J, García-Molina MDM, Garcia-Molina F, Garcia-Ruiz PA, Varon R, Rodriguez-Lopez JN, Garcia-Canovas F (2012) Biochem Biophys Res Commun 424:228–233

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Lieberman RL, Rosenzweig AC (2005) Nature 434:177–182

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Lieberman RL, Kondapalli KC, Shrestha DB, Hakemian AS, Smith SM, Telser J, Kuzelka J, Gupta R, Borovik AS, Lippard SJ, Hoffman BM, Rosenzweig AC, Stemmler TL (2006) Inorg Chem 45:8372–8381

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  116. 116.

    Balasubramanian R, Rosenzweig AC (2007) Acc Chem Res 40:573–580

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Heller A (2004) Phys Chem Chem Phys 6:209–216

    CAS  Article  Google Scholar 

  118. 118.

    Lee CW, Gray HB, Anson FC, Malmstrom BG (1984) J Electroanal Chem 172:289–300

    CAS  Article  Google Scholar 

  119. 119.

    Messerschmidt A, Luecke H, Huber R (1993) J Mol Biol 230:997–1014

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Shin W, Sundaram UM, Cole JL, Zhang HH, Hedman B, Hodgson KO, Solomon EI (1996) J Am Chem Soc 118:3202–3215

    CAS  Article  Google Scholar 

  121. 121.

    Komori H, Sugiyama R, Kataoka K, Higuchi Y, Sakurai T (2012) Angew Chem Int Ed 51:1861–1864

    CAS  Article  Google Scholar 

  122. 122.

    Lee SK, DeBeer George S, Antholine WE, Hedman B, Hodgson KO, Solomon EI (2002) J Am Chem Soc 124:6180–6193

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Kataoka K, Kitagawa R, Inoue M, Naruse D, Sakurai T (2005) Huang H-w. Biochemistry 44:7004–7012

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Palmer AE, Quintanar L, Severance S, Wang T-P, Kosman DJ, Solomon EI (2002) Biochemistry 41:6438–6448

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Ueki Y, Inoue M, Kurose S, Kataoka K, Sakurai T (2006) FEBS Lett 580:4069–4072

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Kataoka K, Sugiyama R, Hirota S, Inoue M, Urata K, Minagawa Y, Seo D, Sakurai T (2009) J Biol Chem 284:14405–14413

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  127. 127.

    Fredericq L (1878) Comptes Rendus de l’Académie des Sciences 87:996–998

    Google Scholar 

  128. 128.

    Fredericq L (1878) Archives de zoologie expérimentale 7:535–583

    Google Scholar 

  129. 129.

    Reglier M, Jorand C, Waegell B (1990) Chem Comm 1752–1755

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM120187). JBG acknowledges the National Institutes of Health Ruth L. Kirchstein National Research Service Fellowship (5F32GM103071) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Daniel P. Stack.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keown, W., Gary, J.B. & Stack, T.D.P. High-valent copper in biomimetic and biological oxidations. J Biol Inorg Chem 22, 289–305 (2017). https://doi.org/10.1007/s00775-016-1420-5

Download citation

Keywords

  • Copper(III)
  • Dioxygen activation
  • Tyrosinase
  • Biomimetic