The colorimetric determination of selectively cleaved adenosines and guanosines in DNA oligomers using bicinchoninic acid and copper

  • Elizabeth M. Thomas
  • Stephen M. TestaEmail author
Original Paper


Colorimetric methods combined with color-changing chemical probes are widely used as simple yet effective tools for identifying and quantifying a wide variety of molecules in solution. For nucleic acids (DNA and RNA), perhaps the most commonly used colorimetric probe is potassium permanganate, which can be used to identify single-stranded pyrimidines (thymine and cytosine) in polymers. Unfortunately, permanganate is not an effective probe for identifying purines (adenine and guanine), especially in the presence of the more reactive pyrimidines. Therefore, robust methods for discriminating between the purines remain elusive, thereby creating a barrier toward developing more complex colorimetric applications. In this proof-of-principle study, we demonstrate that bicinchoninic acid (BCA) and copper, when combined with purine-specific chemical cleavage reactions, can be a colorimetric probe for the identification and quantification of adenosines and/or guanosines in single-stranded DNA oligomers, even in the presence of pyrimidines. Furthermore, the reactions are stoichiometric, which allows for the quantification of the number of adenosines and/or guanosines in these oligomers. Because the BCA/copper reagent detects the reducing sugar, 2-deoxyribose, that results from the chemical cleavage of a given nucleotide’s N-glycosidic bond, these colorimetric assays are effectively detecting apurinic sites in DNA oligomers, which are known to occur via DNA damage in biological systems. We demonstrate that simple digital analysis of the color-changing chromophore (BCA/copper) is all that is necessary to obtain quantifiable and reproducible data, which indicates that these assays should be broadly accessible.


BCA assay DNA Colorimetry Copper Apurinic 



The authors would like to acknowledge Jeremy Maynard, Christopher Noe, and Dr. Jonathon Hart for their preliminary work on the development of the colorimetric quantification approach. The authors would like to thank the anonymous reviewers for helpful suggestions that substantially improved this manuscript.


  1. 1.
    Burton K (1956) Biochem J 62(2):315–323CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brown DM, Friedmann T (1978) Nucleic Acids Res 5(2):615–622CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maxam AM, Gilbert W (1980) Methods Enzymol 65(1):499–560CrossRefPubMedGoogle Scholar
  4. 4.
    Schmid CW, Rubin CM (1980) Nucleic Acids Res 8(20):4613–4620CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Johnston BH, Rich A (1985) Cell 42:713–724CrossRefPubMedGoogle Scholar
  6. 6.
    Herr W (1985) Proc Natl Acad Sci USA 82:8009–8013CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dervan PB, Iverson BL (1987) Nucleic Acids Res 15(19):7823–7830CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kubo K, Ide H, Wallace SS, Kow YW (1992) Biochemistry 31:3703–3708CrossRefPubMedGoogle Scholar
  9. 9.
    Cotton RGH, Smooker PM (1993) Mutat Res 288:65–77CrossRefPubMedGoogle Scholar
  10. 10.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151CrossRefPubMedGoogle Scholar
  11. 11.
    Tullius T, Pogozelski WK (1998) Chem Rev 98:1089–1107CrossRefPubMedGoogle Scholar
  12. 12.
    Lhomme J, Constant JF, Demeunynck M (1999) Biopolymers 52(2):65–83CrossRefPubMedGoogle Scholar
  13. 13.
    Burrows CJ, Muller JG, Kornyushyna O, Lu W, Duarte V, Leipold MD, David SS (2002) Environ Health Perspect 110:713–717CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bui C, Lambrinakos A, Cotton RG (2003) Biopolymers 70:628–636CrossRefPubMedGoogle Scholar
  15. 15.
    Kahl BF, Paule MR (2009) Methods Mol Biol 543:73–85CrossRefPubMedGoogle Scholar
  16. 16.
    Maiti A, Drohat AC (2014) Org Biomol Chem 12:8367–8378CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Weeks KM, Nelson JAE, Rice GM, Busan S, Siegfried NA (2014) Nat Methods 11(9):959–965CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bevilacqua PC, Assmann SM, Tan Y, Kwok CK, Ding Y (2015) Nat Protoc 10(7):1050–1066CrossRefPubMedGoogle Scholar
  19. 19.
    Smith PK et al (1985) Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  20. 20.
    Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, Sun Y, Liu X, Huang K, Ma X, Wu Y, Liang XJ (2012) Anal Chem 84(3):1253–1258CrossRefPubMedGoogle Scholar
  21. 21.
    Hutter E, Maysinger D (2013) Trends Pharmacol Sci 34(9):497–507CrossRefPubMedGoogle Scholar
  22. 22.
    Leung C-H, Zhong H-J, Lu L, Chan DS-H, Ma D-L (2013) Brief Func Genom 12(6):525–535CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Xu Z, Yoon J (2010) Chem Soc Rev 40:2222–2235CrossRefGoogle Scholar
  24. 24.
    Logvina NA, Yajubovskaya MG, Dolinnaya NG (2011) Biochemistry(Moscow) 76(2):245–252Google Scholar
  25. 25.
    Tabone T et al (2006) Nucleic Acids Res 34(6):1–9CrossRefGoogle Scholar
  26. 26.
    Kirk JT (1967) Biochem J 105(2):673–677CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dizdaroglu M, Holwitt E, Hagan MP, Blakely WF (1986) Biochem J 235(2):531–536CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gendimenico GJ, Bouquin PL, Tramposch KM (1988) Anal Biochem 173(1):45–48CrossRefPubMedGoogle Scholar
  29. 29.
    Luo W, Muller J, Rachlin E, Burrows C (2001) Chem Res Toxicol 14:927–938CrossRefPubMedGoogle Scholar
  30. 30.
    Margulis D (2006) Photoshop Lab color: the canyon conundrum and other adventures in the most powerful colorspace. Pearson Education, BerkeleyGoogle Scholar
  31. 31.
    Sharma G, Wu W, Dalal W (2005) The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30(1):21–30CrossRefGoogle Scholar
  32. 32.
    Anthon GE, Barrett DM (2002) Anal Biochem 305:287–289CrossRefPubMedGoogle Scholar
  33. 33.
    Vaitukaitis JL (2004) Development of the home pregnancy test. Ann N Y Acad Sci 1038:220–222CrossRefPubMedGoogle Scholar
  34. 34.
    Myers RJ (2010) J Chem Educ 87:30–32CrossRefGoogle Scholar
  35. 35.
    Cenens J, Schoonheydt RA (1998) Clay Clay Miner 36(3):214–224CrossRefGoogle Scholar
  36. 36.
    De Faubert Maunder MJ (1974) J Pharm Pharmacol 26(8):637–638CrossRefPubMedGoogle Scholar
  37. 37.
    Sharma G (2003) Digital color imaging handbook. CRC, Boca RatonGoogle Scholar
  38. 38.
    Sachsenmaier N, Handl S, Debeljak F, Waldsich C (2014) Methods Mol Biol 1086:79–94CrossRefPubMedGoogle Scholar
  39. 39.
    Altieri F, Grillo C, Maceroni M, Chichiarelli S (2008) Antioxid Redox Sig. 10:891–937CrossRefGoogle Scholar
  40. 40.
    Hegde V, Wang M, Deutsch WA (2004) DNA Repair (Amst). 3(2):121–126CrossRefPubMedGoogle Scholar
  41. 41.
    Nishizawa S, Sato Y, Teramae N (2014) Anal Sci 30(1):137–142CrossRefPubMedGoogle Scholar
  42. 42.
    Roberts KP, Sobrino JA, Payton J, Mason LB, Turesky RJ (2006) Chem Res Toxicol 19:300–309CrossRefPubMedGoogle Scholar
  43. 43.
    Ide H, Akamatsu K, Kimura Y, Michiue K, Makino K, Asaeda A, Takamori Y, Kubo K (1993) Biochemistry 32(32):8276–8283CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations