Abstract
Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-l-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.
This is a preview of subscription content, access via your institution.



















References
- 1.
Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605
- 2.
Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Chem Soc Rev 40:4077–4098
- 3.
Decker H, Schweikardt T, Tuczek F (2006) Angew Chem Int Ed 45:4546–4550
- 4.
Sánchez-Ferrer Á, Rodríguez-López JN, García-Cánovas F, García-Carmona F (1995) Biochim Biophys Acta 1247:1–11
- 5.
Wu B (2014) Curr Top Med Chem 14:1425–1449
- 6.
Simon JD, Peles D, Wakamatsu K, Ito S (2009) Pigment Cell Melanoma Res 22:563–579
- 7.
Loizzo MR, Tundis R, Menichini F (2012) Compr Rev Food Sci Food Saf 11:378–398
- 8.
van Holde KE, Miller KI, Decker H (2001) J Biol Chem 276:15563–15566
- 9.
Solem E, Tuczek F, Decker H (2016) Angew Chem 128:2934–2938
- 10.
Réglier M, Jorand C, Wagell B (1990) J Chem Soc Chem Commun 24:1752–1755
- 11.
Casella L, Gullotti M, Bartosek M, Pallanza G, Laurenti E (1991) J Chem Soc Chem Commun 18:1235–1237
- 12.
Battaini G, De Carolis M, Monzani E, Tuczek F, Casella L (2003) J Chem Soc Chem Commun 6:726–727
- 13.
Battaini G, Monzani E, Casella L, Lonardi E, Tepper AWJW, Canters GW, Bubacco L (2002) J Biol Chem 277:44606–44612
- 14.
Palavicini P, Granata A, Monzani E, Casella L (2005) J Am Chem Soc 127:18031–18036
- 15.
Spada A, Palavicini S, Monzani E, Bubacco L, Casella L (2009) Dalton Trans 2009:6468–6471
- 16.
Garcia-Bosch I, Company A, Frisch JR, Torrent-Sucarrat M, Cardellach M, Gamba I, Gìell M, Casella L, Que L Jr, Ribas X, Luis JM, Costas M (2010) Angew Chem Int Ed 49:2406–2409
- 17.
Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Science 308:1890–1892
- 18.
Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI (2009) J Am Chem Soc 131:6421–6438
- 19.
Rolff M, Schottenheim J, Peters G, Tuczek F (2010) Angew Chem Int Ed 49:6438–6442
- 20.
Hoffmann A, Citek C, Binder S. Goos A, Rübhausen M, Troeppner O, Ivanovic-Burmazovic I, Wasinger EC, Stack TDP, Herres-Pawlis S (2013) Angew Chem Int Ed 52:5398–5401
- 21.
Esguerra KVN, Fall Y, Lumb JP (2014) Angew Chem Int Ed 53:5877–5881
- 22.
Askari MS, Rodriguez-Solano LA, Proppe A, McAllister B, Lumb JP, Otterwaelder X (2015) Dalton Trans 44:12094–12097
- 23.
Xu B, Lumb JP, Arndtsen BA (2015) Angew Chem Int Ed 54:4208–4211
- 24.
Esguerra KVN, Fall Y, Petijean L, Lumb JP (2014) J Am Chem Soc 136:7662–7668
- 25.
Askari MS, Esguerra KVN, Lumb JP, Ottenwaelder X (2015) Inorg Chem 54:8665–8672
- 26.
Huang Z, Kwon O, Esguerra KVN, Lumb JP (2015) Tetrahedron 71:5871–5885
- 27.
Hamann JN, Schneider R, Tuczek F (2015) J Coord Chem 68:3259–3271
- 28.
Schottenheim J, Gernert C, Herzigkeit B, Krahmer J, Tuczek F (2015) Eur J Inorg Chem 2015:3501–3511
- 29.
Hamann JN, Rolff M, Tuczek F (2015) Dalton Trans 44:3251–3258
- 30.
Hamann JN, Tuczek F (2014) Chem Commun 50:2298–2300
- 31.
Schottenheim J, Fateeva N, Thimm W, Krahmer J, Tuczek F (2013) Z Allg Anorg Chem 8:1491–1497
- 32.
Rolff M, Hamann JN, Tuczek F (2011) Angew Chem 123:7057–7061
- 33.
Rolff M, Schottenheim J, Tuczek F (2010) J Coord Chem 63:2382–2399
- 34.
Rolff M, Tuczek F (2008) Angew Chem 120:2378–2381
- 35.
Braussaud N, Rüther T, Cavell KJ, Skelton BW, White AH (2001) Synthesis 4:626–632
- 36.
Kovalainen JT, Christiaans JAM, Kotisaari S, Laitinen JT, Männistö PT, Tuomisto L, Gynther J (1999) J Med Chem 42:1193–1202
- 37.
Garibay PW (2011) US 2011/0166321 A1
- 38.
Kupfer R, Nagel M, Wuerthwein EU, Allmann R (1985) Chem Ber 118:3089–3104
- 39.
Sheldrick GM (2008) Acta Crystallogr Sect A Found Crystallogr 64:112–122
- 40.
Sheldrick GM (2015) Acta Crystallogr C 71:3–8
- 41.
Monzani E, Quinti L, Perotti A, Casella L, Gullotti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G (1998) Inorg Chem 37:553–562
- 42.
Mukherjee J, Mukherjee R (2002) Inorg Chim Acta 337:429–438
- 43.
Nevesa A, Rossi LM, Bortoluzzi AJ, Szpoganicz B, Wiezbicki C, Schwingel E (2002) Inorg Chem 41:1788–1794
- 44.
Sénèque O, Campion M, Douziech B, Giorgi M, Rivière E, Journaux Y, Le Mest Y, Reinaud O (2002) Eur J Inorg Chem 8:2007–2014
- 45.
Rall J, Wanner M, Albrecht M, Hornung FM, Kaim W (1999) Chem Eur J 5:2802–2809
- 46.
Horner L, Geyer E (1965) Chem Ber 98:2016–2045
- 47.
Harmalker S, Jones SE, Sawyer DT (1983) Inorg Chem 22:2790–2794
- 48.
Stallings MD, Morrison MM, Sawyer DT (1981) Inorg Chem 20:2655–2660
- 49.
Gentschev P, Müller N, Krebs B (2000) Inorg Chim Acta 300:422–452
- 50.
Zippel F, Ahlers F, Werner R, Haase W, Nolting HF, Krebs B (1996) Inorg Chem 35:3409–3419
- 51.
Wegner R, Gottschaldt M, Görls H, Jäger EG, Klemm D (2000) Angew Chem 112:608–612
- 52.
Kao CH, Wie HH, Liu YH, Lee GH, Wang Y, Lee CJ (2001) J Inorg Biochem 84:171–178
- 53.
Wegner R, Gottschaldt M, Görls H, Jäger EG, Klemm D (2001) Chem Eur J 7:2143–2157
- 54.
Ackermann J, Meyer F, Kaifer E, Pritzkow H (2002) Chem Eur J 8:247–258
- 55.
Manzur J, Garcia AM, Rivas V, Atria AM, Valenzuela J, Spodine E (1997) Polyhedron 16:2299–2301
- 56.
Jovanovic SV, Kónya K, Scaiano JC (1995) Can J Chem 73:1803–1810
- 57.
Bulkowski JE (1985) US patent 4545937
- 58.
Ramadan AEMM, Youssef S, Eissa H (2014) Int J Adv Res 2:116–130
- 59.
Clayden J, Greeves N, Warren S (2012) Organic chemistry. Oxford University Press, Oxford
- 60.
Nilges MJ, Swartz HM, Riley PA (1984) J Biol Chem 259:2446–2451
- 61.
Taylor SW, Molinski TF, Rzepecki LM, Waite JH (1991) J Nat Prod 54:918–922
- 62.
Badger GM, Walker IS (1956) J Chem Soc, pp 122–126
- 63.
Zhu JH, Olmstead JA, Gray DG (1995) J Wood Chem Technol 15:43–64
- 64.
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990
- 65.
Wilfer C, Liebhäuser P, Hoffmann A, Erdmann H, Grossmann O, Runtsch L, Paffenholz E, Schepper R, Dick R, Bauer M, Dürr M, Ivanovic-Burmazovic I, Herres-Pawlis S (2015) Chem Eur J 21:17639–17649
- 66.
Palenik GJ (1964) Acta Cryst 17:687–695
- 67.
Walli A, Dechert S, Bauer M, Demeshko S, Meyer F (2014) Eur J Inorg Chem 2014:4660–4676
- 68.
Li J, Widlicka DW, Fichter K, Reed DP, Weisman GR, Wong EH, DiPasquale A, Heroux KJ, Golen JA, Reinhold AL (2010) Inorg Chim Acta 364:185–194
- 69.
Santagostini L, Gullotti M, Monzani E, Casella L, Dillinger R, Tuczek F (2000) Chem Eur J 6:519–522
Acknowledgments
We express our gratitude to Deutsche Forschungsgemeinschaft (DFG), CAU Kiel and COST CM 1003 for support of this research. Thanks to Miriam Schehr for the introduction to operate with the Isolera One fabricated by Biotage, Marcel Dommaschk for the help measuring the fluorescence spectra and Michael Wendt for performing the XRPD measurements.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors declare that there are no conflicts of interests.
Additional information
Dedicated to Prof. Dr. Edward I. Solomon in honor of the ACS Alfred Bader Award.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wendt, F., Näther, C. & Tuczek, F. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure–reactivity correlations. J Biol Inorg Chem 21, 777–792 (2016). https://doi.org/10.1007/s00775-016-1370-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Type 3 copper enzymes
- Tyrosinase
- Catechol oxidase
- Kinetics
- Dioxygen activation