Skip to main content
Log in

A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo–Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (MoVI–CuI, MoV–CuII, MoV–CuI, and MoIV–CuI) and Mo-coordinated equatorial ligands (O2−, OH, H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = −467 mV vs. SHE) is in reasonable agreement with the experimental value (E = −558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the MoVI–CuI state and an equatorial water in the MoIV–CuI state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mörsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Biodegradation 3:61–82

    Article  Google Scholar 

  2. Moxley JM, Smith KA (1998) Soil Biol Biochem 30:65–79

    Article  CAS  Google Scholar 

  3. Wilcoxen J, Hille R (2013) J Biol Chem 288:36052–36060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci 99:15971–15976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gnida M, Ferner R, Gremer L, Meyer O, Meyer-Klaucke W (2003) Biochemistry 42:222–230

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B, Hemann CF, Hille R (2010) J Biol Chem 285:12571–12578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail GE 3rd, Kirk ML, Hoffman BM, Hille R (2013) J Am Chem Soc 135:17775–17782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siegbahn PE, Shestakov AF (2005) J Comput Chem 26:888–898

    Article  CAS  PubMed  Google Scholar 

  9. Stein BW, Kirk ML (2015) J Biol Inorg Chem 20:183–194

    Article  CAS  PubMed  Google Scholar 

  10. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  11. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  12. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  13. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  14. Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282–1290

    Article  PubMed  Google Scholar 

  15. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) J Chem Theory Comput 4:908–919

    Article  CAS  PubMed  Google Scholar 

  16. Neese F (2003) J Comput Chem 24:1740–1747

    Article  CAS  PubMed  Google Scholar 

  17. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  18. Bykov D, Petrenko T, Izsák R, Kossmann S, Becker U, Valeev E, Neese F (2015) Mol Phys 113:1961–1977

    Article  CAS  Google Scholar 

  19. Knizia G (2013) J Chem Theory Comput 9:4834–4843

    Article  CAS  PubMed  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  22. Izsak R, Neese F (2011) J Chem Phys 135:144105

    Article  PubMed  Google Scholar 

  23. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98–109

    Article  CAS  Google Scholar 

  24. Palascak MW, Shields GC (2004) J Phys Chem A 108:3692–3694

    Article  CAS  Google Scholar 

  25. Sinnecker S, Neese F (2006) J Comput Chem 27:1463–1475

    Article  CAS  PubMed  Google Scholar 

  26. Rokhsana D, Dooley DM, Szilagyi RK (2008) J Biol Inorg Chem 13:371–383

    Article  CAS  PubMed  Google Scholar 

  27. Bjornsson R, Lima FA, Spatzal T, Weyhermuller T, Glatzel P, Bill E, Einsle O, Neese F, DeBeer S (2014) Chem Sci 5:3096–3103

    Article  CAS  Google Scholar 

  28. Gourlay C, Nielsen DJ, White JM, Knottenbelt SZ, Kirk ML, Young CG (2006) J Am Chem Soc 128:2164–2165

    Article  CAS  PubMed  Google Scholar 

  29. Hille R, Dingwall S, Wilcoxen J (2015) J Biol Inorg Chem 20:243–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by generous financial contributions from Whitman College and the M. J. Murdock Charitable Trust. Special thanks to Dr. Robert Szilagyi (Montana State University, Bozeman, MT) for his tremendous assistance in setting up the computational server at Whitman College, and for providing comments and feedback during the preparation of this manuscript. We gratefully acknowledge the Max Planck Society for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Rokhsana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 693 kb)

Supplementary material 2 (PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokhsana, D., Large, T.A.G., Dienst, M.C. et al. A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase. J Biol Inorg Chem 21, 491–499 (2016). https://doi.org/10.1007/s00775-016-1359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1359-6

Keywords

Navigation