Abstract
The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol and metal homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein-bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na+/K+ electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol and Fe homeostases reflected their different uptake and valences; (b) their similar effects on essential metal and electrolyte homeostases reflected the energy dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology.
This is a preview of subscription content, access via your institution.





References
Barkay T, Miller SM, Summers AO (2003) FEMS Microbiol Rev 27:355–384
Mason RP, Fitzgerald WF, Morel FMM (1994) Geochim Cosmochim Acta 58:3191–3198
Norn S, Permin H, Kruse E, Kruse PR (2008) Dan Medicin Arbog 36:21–40
Crinnion WJ (2000) Altern Med Rev 5:209–223
Richardson GM, Wilson R, Allard D, Purtill C, Douma S, Graviere J (2011) Sci Total Environ 409:4257–4268
Malm O (1998) Environ Res 77:73–78
Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Science 181:230–241
Yorifuji T, Tsuda T, Takao S, Harada M (2008) Epidemiology 19:3–9
Davidson PW, Myers GJ, Weiss B (2004) Pediatrics 113:1023–1029
Clarkson TW, Magos L (2006) Crit Rev Toxicol 36:609–662
Cheesman BV, Arnold AP, Rabenstein DL (1988) J Am Chem Soc 110:6359–6364
Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D (1996) Chem Res Toxicol 9:709–712
Valko M, Morris H, Cronin MT (2005) Curr Med Chem 12:1161–1208
Schafer FQ, Buettner GR (2001) Free Radic Biol Med 30:1191–1212
Miseta A, Csutora P (2000) Mol Biol Evol 17:1232–1239
Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) J Biol Chem 283:11913–11923
O’Connor TR, Graves RJ, de Murcia G, Castaing B, Laval J (1993) J Biol Chem 268:9063–9070
Imesch E, Moosmayer M, Anner BM (1992) Am J Physiol 262:F837–F842
Soskine M, Steiner-Mordoch S, Schuldiner S (2002) Proc Natl Acad Sci USA 99:12043–12048
Khan MA, Wang F (2009) Environ Toxicol Chem 28:1567–1577
Gladyshev VN, Kryukov GV (2001) BioFactors 14:87–92
Finney LA, O’Halloran TV (2003) Science 300:931–936
Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) J Bacteriol 190:5431–5438
Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Curr Top Med Chem 1:529–539
Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) J Biol Inorg Chem 13:1205–1218
Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Nature 460:823–830
Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL II, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, Adams MW (2010) Nature 466:779–782
Polacco BJ, Purvine SO, Zink EM, Lavoie SP, Lipton MS, Summers AO, Miller SM (2011) Mol Cell Proteomics 10(M110):004853
Neidhardt FC, Bloch PL, Smith DF (1974) J Bacteriol 119:736–747
Bradford MM (1976) Anal Biochem 72:248–254
Cayley S, Record MT Jr (2003) Biochemistry 42:12596–12609
Ellman GL (1959) Arch Biochem Biophys 82:70–77
Woodmansee AN, Imlay JA (2002) Methods Enzymol 349:3–9
Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O’Donovan C (2015) Nucleic Acids Res 43:D1057–D1063
Kim S, Gupta N, Pevzner PA (2008) J Proteome Res 7:3354–3363
Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Anal Chem 74:5383–5392
Scott RA (2000) Physical methods in bioinorganic chemistry—spectroscopy and magnetism. University Science Books, Sausalito, pp 465–504
George GN, Garrett RM, Prince RC, Rajagopalan KV (1996) J Am Chem Soc 118:8588–8592
Ankudinov AL, Bouldin CE, Rehr JJ, Sims J, Hung H (2002) Phys Rev B 65
Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC (1991) Phys Rev B Condens Matter 44:4146–4156
Cosper NJ, Stalhandske CM, Saari RE, Hausinger RP, Scott RA (1999) J Biol Inorg Chem 4:122–129
Tyagarajan K, Pretzer E, Wiktorowicz JE (2003) Electrophoresis 24:2348–2358
Fruchter RG, Crestfield AM (1967) J Biol Chem 242:5807–5812
Boja ES, Fales HM (2001) Anal Chem 73:3576–3582
Cotner RC, Clagett CO (1973) Anal Biochem 54:170–177
Basinger MA, Casas J, Jones MM, Weaver AD, Weinstein NH (1981) J Inorg Nucl Chem 43:1419–1425
Khokhlova A, Chernikova G, Shishin L (1982). Inst obs neorg khimii im ns kurnakova leninski prospekt 31, 71 Moscow, Russia, pp 2976–2978
Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjoberg S, Wanner H (2005) IUPAC. Pure Appl Chem 77:739–800
Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281
Keyer K, Imlay JA (1997) J Biol Chem 272:27652–27659
Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) J Biol Chem 284:938–944
Parks JM, Guo H, Momany C, Liang L, Miller SM, Summers AO, Smith JC (2009) J Am Chem Soc 131:13278–13285
Xu FF, Imlay JA (2012) Appl Environ Microbiol 78:3614–3621
Stricks W, Kolthoff IM (1953) J Am Chem Soc 75:5673–5681
Güzeloğlu Ş, Yalçın G, Pekin M (1998) J Organomet Chem 568:143–147
McClintock CS, Parks JM, Bern M, Ghattyvenkatakrishna PK, Hettich RL (2013) J Proteome Res 12:3307–3316
Roosild TP, Castronovo S, Healy J, Miller S, Pliotas C, Rasmussen T, Bartlett W, Conway SJ, Booth IR (2010) Proc Natl Acad Sci USA 107:19784–19789
Ferguson GP (1999) Trends Microbiol 7:242–247
Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Nature 435:1197–1202
Padan E (2011) Compr Physiol 1:1711–1719
Taglicht D, Padan E, Schuldiner S (1991) J Biol Chem 266:11289–11294
Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) Arch Microbiol 183:9–18
Zheng M, Doan B, Schneider TD, Storz G (1999) J Bacteriol 181:4639–4643
Nies DH (2003) FEMS Microbiol Rev 27:313–339
Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) J Am Chem Soc 128:2172–2173
Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) J Am Chem Soc 129:244–245
Brooks P, Davidson N (1960) J Am Chem Soc 82:2118–2123
Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917
Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L (1993) Antimicrob Agents Chemother 37:825–834
Rietschel RL, Wilson LA (1982) Arch Dermatol 118:147–149
Tosti A, Tosti G (1988) Contact Dermatitis 18:268–273
Freed LF (1948) S Afr Med J 22:223–229
Weed LE, Ecker EE (1931) J Infect Dis 49:440–449
Ball LK, Ball R, Pratt RD (2001) Pediatrics 107:1147–1154
WHO (2002) Wkly Epidemiol Rec 77:305–316
Gutknecht J (1981) J Membr Biol 61:61–66
Barkay T, Gillman M, Turner RR (1997) Appl Environ Microbiol 63:4267–4271
Owens RA, Hartman PE (1986) J Bacteriol 168:109–114
Eser M, Masip L, Kadokura H, Georgiou G, Beckwith J (2009) Proc Natl Acad Sci USA 106:1572–1577
Ndu U, Mason RP, Zhang H, Lin S, Visscher PT (2012) Appl Environ Microbiol 78:7276–7282
Mah V, Jalilehvand F (2008) J Biol Inorg Chem 13:541–553
Ravichandran M (2004) Chemosphere 55:319–331
Imlay JA (2013) Nat Rev Microbiol 11:443–454
Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM (2005) Biochemistry 44:11402–11416
Jung YS, Yu L, Golbeck JH (1995) Photosynth Res 46:249–255
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Biochim Biophys Acta 1827:455–469
Hong B, Nauss R, Harwood IM, Miller SM (2010) Biochemistry 49:8187–8196
Gabriel SE, Helmann JD (2009) J Bacteriol 191:6116–6122
Acknowledgments
We thank Mary Lipton, Erika Zink, and Samuel Purvine (all of the DOE Pacific Northwest National Laboratory) for chemical and biophysical acquisition and SEQUEST analysis of the proteomic data, Tejas Chaudhari and Sagar Tarkhadkar (Department of Computer Sciences, Univ. of Georgia) for assistance with database development and management, and Graham George (University of Saskatchewan and the Canadian Light Source) for mercuric bromide EXAFS data collection. This work was supported by DOE awards ER64408 and ER65286 to AOS and ER64409 and ER65195 to SMM and NIH award GM62524 to MKJ.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
LaVoie, S.P., Mapolelo, D.T., Cowart, D.M. et al. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli . J Biol Inorg Chem 20, 1239–1251 (2015). https://doi.org/10.1007/s00775-015-1303-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-015-1303-1