Skip to main content
Log in

Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 21 November 2015

Abstract

Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2007) J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  2. Balunas MJ, Kinghorn AD (2005) Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  3. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  4. Ganesan A (2008) Curr Opin Chem Biol 12:306–317

    Article  CAS  PubMed  Google Scholar 

  5. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Life Sci 78:2081–2087

    Article  CAS  PubMed  Google Scholar 

  6. Sharma RA, Gescher AJ, Steward WP (2005) Eur J Cancer 41:1955–1968

    Article  CAS  PubMed  Google Scholar 

  7. Menon VP, Sudheer AR (2007) Springer, New York

  8. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) BioMed Res Int 2014:1–12

  9. Salem M, Rohani S, Gillies ER (2014) RSC Adv 4:10815–10829

    Article  CAS  Google Scholar 

  10. Ono M, Higuchi T, Takeshima M, Chen C, Nakano S (2013) Anticancer Res 33:1861–1866

    CAS  PubMed  Google Scholar 

  11. Senft C, Polacin M, Priester M, Seifert V, Kögel D, Weissenberger J (2010) BMC Cancer 10:491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liu D, Schwimer J, Liu Z, Woltering EA, Greenway FL (2008) Pharm Biol 46:677–682

    Article  CAS  Google Scholar 

  13. Mishra S, Palanivelu K (2008) Ann Indian Acad Neurol 11:13

    Article  PubMed Central  PubMed  Google Scholar 

  14. Accurso F, Pediatr J (2004) Gastroenterol Nutr 39:235

    Article  Google Scholar 

  15. Mythri RB, SrinivasBharath MM (2012) Curr Pharm Des 18:91–99

    Article  CAS  PubMed  Google Scholar 

  16. Wongcharoen W, Phrommintikul A (2009) Int J Cardiol 133:145–151

    Article  PubMed  Google Scholar 

  17. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Diabetes Care 35:2121–2127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Manjunatha H, Srinivasan K (2007) Lipids 42:1133–1142

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal BB, Harikumar KB (2009) Int J Biochem Cell Biol 41:40–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) J Pharm Biomed Anal 15:1867–1876

    Article  CAS  PubMed  Google Scholar 

  21. Shen L, Ji HF (2012) Trends Mol Med 18:138–144

  22. Priyadarsini KI (2009) J Photochem Photobiol C 10:81–96

    Article  CAS  Google Scholar 

  23. Price LC, Buescher RW (1997) J Food Sci 62:267–269

    Article  CAS  Google Scholar 

  24. Canamares MV, Garcia-Ramos JV, Sanchez-Cortes S (2006) Appl Spectrosc 60:1386–1391

    Article  CAS  PubMed  Google Scholar 

  25. Mattia A, Ferrari E, Croci S, Atti G, Rubagotti S, Iori M, Capponi PC, Zerbini A, Saladini M, Versari A (2014) Inorg Chem 53:4922–4933

    Article  CAS  Google Scholar 

  26. Vajragupta O, Boonchoong P, Berliner LJ (2004) Free Radical Res 38:303–314

    Article  CAS  Google Scholar 

  27. Thompson KH, Böhmerle K, Polishchuk E, Martins C, Toleikis P, Tse J, Orvig C (2004) J Inorg Biochem 98:2063–2070

    Article  CAS  PubMed  Google Scholar 

  28. Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Orvig C (2005) J Inorg Biochem 99:2217–2225

    Article  CAS  PubMed  Google Scholar 

  29. Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, Indira Priyadarsini K (2007) Eur J Inorg Chem 42:431–439

    CAS  Google Scholar 

  30. Valentini A, Conforti F, Crispini A, De Martino A, Condello R, Stellitano C, Pucci D (2008) J Med Chem 52:484–491

    Article  CAS  Google Scholar 

  31. Reddy S, Aggarwal BB (1994) FEBS Lett 341:19–22

    Article  CAS  PubMed  Google Scholar 

  32. Skrzypczak-Jankun E, McCabe NP, Selman SH, Jankun J (2000) Int J Mol Med 6:521–527

    CAS  PubMed  Google Scholar 

  33. Hu GX, Lin H, Lian QQ, Zhou SH, Guo J, Zhou HY, Ge RS (2013) PLoS One 8:e49976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR (1993) Bioorg Med Chem 1:415–422

    Article  CAS  PubMed  Google Scholar 

  35. Vajragupta P, Boonchoong O, Morris GM, Olson AJ (2005) Bioorg Med Chem Lett 15:3364–3368

  36. Liu M, Yuan M, Luo M, Bu X, Luo HB, Hu X (2010) Biophys Chem 147:28–34

    Article  CAS  PubMed  Google Scholar 

  37. Shen L, Ji HF (2009) Bioorg Med Chem Lett 19:5990–5993

    Article  CAS  PubMed  Google Scholar 

  38. Ngo TT (2010) Anal Lett 43:1572–1587

    Article  CAS  Google Scholar 

  39. Veitch NC (2004) Phytochem 65:249–259

    Article  CAS  Google Scholar 

  40. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Mol Biol 4:1032–1038

    Article  CAS  Google Scholar 

  41. Wright DG (2012) Chem Biol 19:3–10

    Article  CAS  PubMed  Google Scholar 

  42. Alanis JA (2005) Arch Med Res 36:697–705

    Article  PubMed  Google Scholar 

  43. Han S, Yang Y (2005) Dyes Pigm 64:157–161

    Article  CAS  Google Scholar 

  44. Varaprasad K, Vimala K, Ravindra S, Reddy NN, Reddy GV, Raju KM (2011) J Mater Sci Mater Med 22:1863–1872

    Article  CAS  PubMed  Google Scholar 

  45. Liu CH, Huang HY (2012) Chem Pharm Bull 60:1118–1124

    Article  CAS  PubMed  Google Scholar 

  46. Niamsa N, Sittiwet C (2009) J Pharmacol Toxicol 4:173–177

    Article  Google Scholar 

  47. Lawhavinit OA, Kongkathip N, Kongkathip B (2010) Kasetsart J Nat Sci 44:364–371

    CAS  Google Scholar 

  48. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kwon DY (2013) Phytomedicine 20:714–718

    Article  CAS  PubMed  Google Scholar 

  49. Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, Asayesh G (2008) Afr J Biotechnol 7:3832–3835

    CAS  Google Scholar 

  50. Trinder P (1969) Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  51. Low PS, Bada JL, Somero GN (1973) Proc Natl Acad Sci 70:430–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hassani L, Nourozi R (2014) Appl Biochem Biotechnol 172:3558–3569

    Article  CAS  PubMed  Google Scholar 

  53. Kelly SM, Price NC (2000) Curr Protein Peptide Sci 1:349–384

    Article  CAS  Google Scholar 

  54. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  55. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ (2009) Clin Infect Dis 49:1749–1755

    Article  CAS  Google Scholar 

  56. Schomburg D, Salzmann M, Stephan D (1994) Enzyme handbook, vol 7. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  57. Halliwell B, Gutteridge J (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  58. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, New York

    Book  Google Scholar 

  59. Lonhienne T, Gerday C, Feller G (2000) Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1543:1–10

  60. Kelly SM, Jess TJ, Price NC (2005) Biochim Biophys Acta (BBA) Proteins Proteomics 1751:119–139

  61. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  62. Campbell ID, Dwek RA (1984) Biological spectroscopy. Benjamin Cummings Pub. Co, California

    Google Scholar 

  63. Tsaprailis G, Chan DWS, English AM (1998) Biochemistry 37:2004–2016

    Article  CAS  PubMed  Google Scholar 

  64. Wu BP, Wen Q, Xu H, Yang Z (2014) J Mol Catal B Enzym 101:101–107

    Article  CAS  Google Scholar 

  65. Bobone S, van de Weert M, Stella L (2014) J Mol Struct 1077:68–76

    Article  CAS  Google Scholar 

  66. Mohammadi F, Bordbar A, Divsalar A, Mohammadi K, Saboury AA (2009) Protein J 28:117–123

    Article  CAS  PubMed  Google Scholar 

  67. Mohammadi F, Bordbar A, Divsalar A, Mohammadi K, Saboury AA (2009) Protein J 28:189–196

    Article  CAS  PubMed  Google Scholar 

  68. Mohammadi F, Bordbar A, Mohammadi K, Divsalar A, Saboury AA (2010) Can J Chem 88:155–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to the Research Council of Institute for Advanced Studies in Basic Sciences for its financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Hassani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangoshaei, P., Hassani, L., Mohammadi, F. et al. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities. J Biol Inorg Chem 20, 1135–1146 (2015). https://doi.org/10.1007/s00775-015-1295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1295-x

Keywords

Navigation