Skip to main content

Advertisement

Log in

Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The influenza virus PA endonuclease is an attractive target for the development of novel anti-influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg2+ or Mn2+) in the enzyme’s catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and evaluated for their ability to inhibit the PA-Nter catalytic activity. Compounds 16 have been evaluated against influenza virus, both in enzymatic assays with influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure–activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been evaluated. Since chelation may represent a mode of action of such class of molecules, we studied the interaction of two of them, one with and one without biological activity versus the PA enzyme, towards Mg2+, the ion that is probably involved in the endonuclease activity of the heterotrimeric influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin thiosemicarbazone ligand 1 is also described. Moreover, docking studies of PA endonuclease with compounds 1 and 2 were performed, to further analyse the possible mechanism of action of this class of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI (2007) J Infect Dis 196:249–257

    Article  CAS  PubMed  Google Scholar 

  2. Moscona A (2009) N Engl J Med 360:953–956

    Article  CAS  PubMed  Google Scholar 

  3. Memoli MJ, Davis AS, Proudfoot K, Chertow DS, Hrabal RJ, Bristol T, Taubenberger JK (2011) J Infect Dis 203:348–357

    Article  PubMed Central  PubMed  Google Scholar 

  4. Van der Vries E, Schutten M, Fraaij P, Boucher C, Osterhaus A (2013) Adv Pharmacol 67:217–246

    Article  PubMed  Google Scholar 

  5. Vanderlinden E, Naesens L (2014) Med Res Rev 34:301–339

    Article  CAS  PubMed  Google Scholar 

  6. Honda A, Ishihama A (1997) Biol. Chem 378:483–488

    CAS  PubMed  Google Scholar 

  7. Honda A, Mizumoto K, Ishihama A (2002) Proc Natl Acad Sci USA 99:13166–13171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Das K, Aramini JM, Ma LC, Krug RM, Arnold E (2010) Nat Struct Mol Biol 17:530–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) Nature 458:914–918

    Article  CAS  PubMed  Google Scholar 

  10. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Nature 458:909–913

    Article  CAS  PubMed  Google Scholar 

  11. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) Cell 23:847–858

    Article  CAS  PubMed  Google Scholar 

  12. Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009) J Virol 83:9024–9030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. DuBois RM, Slavish PJ, Baughman BM, Yun MK, Bao J, Webby RJ, Webb TR, White SW (2012) PLoS Pathog 8:e1002830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar OH, Ruigrok RW, Cusack S (2012) PLoS Pathog 8:e1002831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Doan L, Handa B, Roberts NA, Klumpp K (1999) Biochemistry 38:5612–5629

    Article  CAS  PubMed  Google Scholar 

  16. Xiao S, Klein ML, LeBard DN, Levine BG, Liang H, MacDermaid CM, Alfonso-Prieto M (2014) J Phys Chem B 118:873–889

    Article  CAS  PubMed  Google Scholar 

  17. Rogolino D, Carcelli M, Sechi M, Neamati N (2012) Coord Chem Rev 256:3063–3086

    Article  CAS  Google Scholar 

  18. Tomassini JE, Selnick H, Davies ME, Armstrong ME, Baldwin J, Bourgeois M, Hastings J, Hazuda D, Lewis J, McClements W, Ponticello G, Radzilowski E, Smith G, Tebben A, Wolfe A (1994) Antimicrob Agents Chemother 38:2827–2837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hastings JC, Selnick H, Wolanski B, Tomassini JE (1996) Antimicrob Agents Chemother 40:1304–1307

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Stevaert A, Nurra S, Pala N, Carcelli M, Rogolino D, Shepard C, Domaoal RA, Kim B, Alfonso-Prieto M, Marras SAE, Sechi M, Naesens L (2015) Mol Pharmacol 87:323–337

    Article  PubMed  Google Scholar 

  21. Singh SB (1995) Tetrahedron Lett 36:2009–2012

    Article  CAS  Google Scholar 

  22. Carcelli M, Rogolino D, Bacchi A, Rispoli G, Fisicaro E, Compari C, Sechi M, Stevaert A, Naesens L (2014) Mol Pharm 11:304–316

    Article  CAS  PubMed  Google Scholar 

  23. Parkes KEB, Ermert P, Fässler J, Ives J, Martin JA, Merrett JH, Obrecht D, Williams G, Klumpp K (2003) J Med Chem 46:1153–1164

    Article  CAS  PubMed  Google Scholar 

  24. Sagong HY, Parhi A, Bauman JD, Patel D, Vijayan RS, Das K, Arnold E, LaVoie EJ (2013) ACS Med Chem Lett 4:547–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA (2007) Invest New Drugs 25:471–477

    Article  CAS  PubMed  Google Scholar 

  26. Kang IJ, Wang LW, Hsu TA, Yueh A, Lee CC, Lee YC, Lee CY, Chao YS, Shih SR, Chern JH (2011) Bioorg Med Chem Lett 21:1948–1952

    Article  CAS  PubMed  Google Scholar 

  27. Quenelle DC, Keith KA, Kern ER (2006) Antiv Res 71:24–30

    Article  CAS  Google Scholar 

  28. Debebe Z, Ammosova T, Breuer D, Lovejoy DB, Kalinowski DS, Kumar K, Jerebtsova M, Ray P, Kashanchi F, Gordeuk VR, Richardson DR, Nekhai S (2011) Mol Pharmacol 79:185–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Pelosi G, Bisceglie F, Bignami F, Ronzi P, Schiavone P, Re MC, Casoli C, Pilotti E (2010) J Med Chem 53:8765–8769

    Article  CAS  PubMed  Google Scholar 

  30. Torti SV, Torti FM (2013) Nat Rev Cancer 13:342–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pelosi G (2010) Open Crystallogr J 3:16–28

    Article  CAS  Google Scholar 

  32. Sacconi L (1954) Z Anorg Allg Chem 275:249–256

    Article  CAS  Google Scholar 

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  34. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Siliqi D, Spagna R (2007) J Appl Cryst 40:609–613

    Article  CAS  Google Scholar 

  35. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  36. Nardelli M (1995) J Appl Cryst 28:659

    Article  CAS  Google Scholar 

  37. Allen FH, Kennard O, Taylor R (1983) Acc Chem Res 16:146–153

    Article  CAS  Google Scholar 

  38. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B 58:389–397

    Article  PubMed  Google Scholar 

  39. Meneghesso S, Vanderlinden E, Stevaert A, McGuigan C, Balzarini J, Naesens L (2012) Antiviral Res 94:35–43

    Article  CAS  PubMed  Google Scholar 

  40. Stevaert A, Dallocchio R, Dessì R, Pala N, Rogolino D, Sechi M, Naesens L (2013) J Virol 87:10524–10538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kim M, Kim SY, Lee HW, Shin JS, Kim P, Jung YS, Jeong HS, Hyun JK, Lee CK (2013) Antiviral Res 100:460–472

    Article  CAS  PubMed  Google Scholar 

  42. Reed LJ, Muench H (1938) Am J Epidemiol 27:493–497

    Google Scholar 

  43. Vanderlinden E, Göktas F, Cesur Z, Froeyen M, Reed ML, Russell CJ, Cesur N, Naesens L (2010) J Virol 84:4277–4288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727

    Article  CAS  PubMed  Google Scholar 

  45. Gong Q, Menon L, Ilina T, Miller LG, Ahn J, Parniak MA, Ishima R (2011) Chem Biol Drug Des 77:39–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Enyedy ÉA, Zsigó É, Nagy NV, Kowol CR, Roller A, Keppler BK, Kiss T (2012) Eur J Inorg Chem 2012(25):4036–4047

  47. Lobana TS, Kumari P, Hundal G, Butcher RJ (2010) Polyhedron 29:1130–1136

    Article  CAS  Google Scholar 

  48. Chellan P, Stringer T, Shokar A, Dornbush PJ, Vazquez-Anaya G, Land KM, Chibale K, Smith GS (2011) J Inorg Biochem 105:1562–1568

    Article  CAS  PubMed  Google Scholar 

  49. Ramachandran E, Kalaivani P, Prabhakaran R, Rath NP, Brinda S, Poornima P, Padma VV, Natarajan K (2012) Metallomics 4:218–227

    Article  CAS  PubMed  Google Scholar 

  50. Kalaivani P, Prabhakaran R, Dallemer F, Poornima P, Vaishnavi E, Ramachandran E, Padma VV, Renganathan R, Natarajan K (2012) Metallomics 4:101–113

    Article  CAS  PubMed  Google Scholar 

  51. West DX, Salberg MM, Bain GA, Liberta AE, Valdés-Martínez J, Hernández Ortega S (1996) Transit Met. Chem. 21:206–212

    CAS  Google Scholar 

  52. Sahadev RKS, Sindhwani SK (1992) Thermochim Acta 202:291–299

    Article  CAS  Google Scholar 

  53. Laskowski RA, Swindells MB (2011) J Chem Inf Mod 51:2778

    Article  CAS  Google Scholar 

  54. Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH (2014) Fitoterapia 93:47–53

    Article  CAS  PubMed  Google Scholar 

  55. Martin DP, Blachly PG, McCammon JA, Cohen SM (2014) J Med Chem 57:7126–7135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Rogolino D, Carcelli M, Bacchi A, Compari C, Contardi L, Fisicaro E, Gatti A, Sechi M, Stevaert A, Naesens L (2015) J Inorg Biochem 150:9–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the “Centro Interfacoltà Misure Giuseppe Casnati” of the University of Parma for facilities. L. Naesens and A. Stevaert acknowledge financial support from the Geconcerteerde Onderzoeksacties—KU Leuven (GOA/15/019/TBA) and the technical assistance from Wim van Dam, Leentje Persoons en Ria Van Berwaer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Carcelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogolino, D., Bacchi, A., De Luca, L. et al. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. J Biol Inorg Chem 20, 1109–1121 (2015). https://doi.org/10.1007/s00775-015-1292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1292-0

Keywords

Navigation