Skip to main content
Log in

Mechanistic information on the nitrite-controlled reduction of aquacob(III)alamin by ascorbate at physiological pH

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interaction with nitric oxide (NO) is an important aspect of the biological activity of vitamin B12 (Cbl). Whereas the formation of nitroxylcobalamin (CblNO) via the binding of NO to reduced CblCo(II) has been studied in detail before, the possible intracellular formation of CblNO via reduction of nitrocobalamin (CblNO2) is still questionable. To study this further, spectroscopic and kinetic studies on the reaction of CblNO2 with the intracellular antioxidant ascorbic acid (Asc) were performed in aqueous solution at the physiological pH of 7.2. It was found that the redox pathway of this reaction requires anaerobic conditions as a result of the rapid re-oxidation of reduced CblCo(II). In the studied system, both CblOH2 and CblNO2 are reduced to CblCo(II) by ascorbate at pH 7.2, the CblOH2 complex being two orders of magnitude more reactive than CblNO2. Clear evidence for redox cycling between CblOH2/CblNO2 and CblCo(II) under aerobic conditions was observed as an induction period during which all oxygen was used prior to the formation of CblCo(II) in the presence of an excess of ascorbate. No evidence for the intermediate formation of CblNO or NO radicals during the reduction of CblNO2 could be found.

Graphical Abstract

Nitrocob(III)alamin can be reduced by ascorbic acid under physiological conditions. The products of the reaction are cob(II)alamin and nitrite ion. This reaction is ca. 200 times slower than the one involving aquacob(III)alamin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kröncke K-D, Fehsel K, Kolb-Bachofen V (1997) Nitric Oxide 1:107–120

    Article  PubMed  Google Scholar 

  2. Ignarro LJ, Cirino G, Casini A, Napoli C (1999) J Cardiovasc Pharmacol 34:879–886

    Article  CAS  PubMed  Google Scholar 

  3. Snyder S (1992) Science 257:494–496

    Article  CAS  PubMed  Google Scholar 

  4. Moncada S, Palmer RM, Higgs EA (1991) Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  5. Henry Y, Guissani A (1999) Cel Mol Life Sci 55:1003–1014

    Article  CAS  Google Scholar 

  6. Mannick JB, Schonhoff CM (2004) Free Radical Res 38:1–7

    Article  CAS  Google Scholar 

  7. Wolak M, Zahl A, Schneppensieper T, Stochel G, van Eldik R (2001) J Am Chem Soc 123:9780–9791

    Article  CAS  PubMed  Google Scholar 

  8. Goulding CW, Postigo D, Matthews RG (1997) Biochemistry 36:8082–8091

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee R (ed) (1999) Chemistry and biochemistry of B12. Wiley, New York

    Google Scholar 

  10. Wolak M, Stochel G, Hamza M, van Eldik R (2000) Inorg Chem 39:2018–2019

    Article  CAS  PubMed  Google Scholar 

  11. Hannibal L, Smith CA, Jacobsen DW, Brasch NE (2007) Angew Chem Int Ed 46:5140–5143

    Article  Google Scholar 

  12. Anes JM, Beck RA, Brink JJ, Goldberg RJ (1994) J Chromatogr B 660:180–185

    Article  CAS  Google Scholar 

  13. Smith EL, Fantes KH, Ball S, Waller JG, Emery WB, Anslow WK, Walker AD (1952) Biochem J 52:389–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Walker DT, Dassanayake RS, Garcia KA, Mukherjee R, Brasch NE (2013) Eur J Inorg Chem 2013:3049–3053

    Article  CAS  Google Scholar 

  15. Marques HM, Knapton L (1997) J Chem Soc Dalton Trans. doi:10.1039/A703139D:3827-3834

    Google Scholar 

  16. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  17. Katafias A, Limpert O, Kita P, Fenska J, Koter S, Kaczmarek-Kedziera A, Rozycki H, Bajek A, Uzarska M, van Eldik R (2014) Eur J Inorg Chem 2529–2535

  18. Lente G, Fabian I (2004) Inorg Chem 43:4019–4025

    Article  CAS  PubMed  Google Scholar 

  19. Schneppensieper T, Wanat A, Stochel G, Goldstein S, Meyerstein D, van Eldik R (2001) Eur J Inorg Chem 2001:2317–2325

    Article  Google Scholar 

  20. Nazhat NB, Golding BT, Johnson GRA, Jones P (1989) J Inorg Biochem 36:75–81

    Article  CAS  Google Scholar 

  21. Beaven GH, Johnson EA (1955) Nature 176:1264–1265

    Article  CAS  Google Scholar 

  22. Lu N, Chen C, He Y, Tian R, Xiao Q, Peng Y-Y (2014) Nitric Oxide 40:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Centre in Poland (Grant No. DEC-2012/05/B/ST5/00389). The Faculty of Chemistry of the Jagiellonian University is the beneficiary of the structural funds from the European Union, Grant No. POIG. 02.01.00-12-023/08 “Atomic Scale Science for Innovative Economy (ATOMIN)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi van Eldik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polaczek, J., Orzeł, Ł., Stochel, G. et al. Mechanistic information on the nitrite-controlled reduction of aquacob(III)alamin by ascorbate at physiological pH. J Biol Inorg Chem 20, 1069–1078 (2015). https://doi.org/10.1007/s00775-015-1288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1288-9

Keywords

Navigation