Skip to main content
Log in

DNA binding and cleavage studies of copper(II) complexes with 2′-deoxyadenosine modified histidine moiety

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This work is focused on the study of DNA binding and cleavage properties of 2′-deoxyadenosines modified with ester/amide of histidine (his6dA ester, his6dA amide) and their copper(II) complexes. To determine the coordination mode of the complex species potentiometric and spectroscopic (UV–visible, CD, EPR) studies have been performed. The analysis of electronic absorption and fluorescence spectra has been used to find the nature of the interactions between the compounds and calf thymus DNA (CT-DNA). There is significant influence of the –NH2 and –OCH3 groups on binding of the ligands or the complexes to DNA. Only amide derivative and its complex reveal intercalative ability. In the case of his6dA ester and Cu(II)–his6dA ester the main interactions can be groove binding. DNA cleavage activities of the compounds have been examined by gel electrophoresis. The copper complexes have promoted the cleavage of plasmid DNA, but none of the ligands exhibited any chemical nuclease activity. The application of different scavengers of reactive oxygen species provided a conclusion that DNA cleavage caused by copper complexes might occur via hydrolytic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hadjiliadis N, Sletten E (eds) (2009) Metal complex-DNA interactions. Willey Publishing, Chippenham

    Google Scholar 

  2. Casassas E, Izguierdo-Ridorsa A, Tauler R (1990) J Inorg Biochem 39:327–336

    Article  CAS  Google Scholar 

  3. Hollenstein M, Hipolito ChJ, Lam CH, Perrin DM (2009) ChemBioChem 10:1988–1992

    Article  CAS  PubMed  Google Scholar 

  4. Hollenstein M, Hipolito ChJ, Lam CH, Perrin DM (2009) Nucleic Acids Res 37:1638–1649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Smuga D, Majchrzak K, Sochacka E, Nawrot B (2010) New J Chem 34:934–948

    Article  CAS  Google Scholar 

  6. Lodyga-Chruscinska E, Sierant M, Pawlak J, Sochacka E (2013) QScience 38:1–11

    Google Scholar 

  7. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  8. Gans P, Sabatini A, Vacca A (1985) J Chem Soc. Dalton Trans 6:1195

    Article  Google Scholar 

  9. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  10. Transformation protocol using heat shock MFT, 11/21/03. http://web.stanford.edu/~teruel1/Protocols/pdf/Transformation%20Protocol%20Using%20Heat%20Shock.pdf

  11. Wolfe A, Shimer G, Meehan T (1987) Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  12. Jeyalkshmi K, Selvakumaran N, Bhuranesh NSP, Sreecanth A, Karvembu R (2014) RSC Adv 4:17179–17195

    Article  Google Scholar 

  13. Ragheb MA, Eldesouki MA, Mohamed MS (2015) Spectrochim Acta Part A 138:585–595

    Article  CAS  Google Scholar 

  14. Łodyga-Chruścińska E, Ołdziej S, Sochacka E, Korzycka K, Chruściński L, Micera G, Sanna D, Turek M, Pawlak J (2011) J Inorg Biochem 105:1212–1219

    Article  PubMed  Google Scholar 

  15. Sarathy RP, Ohrt JM, Chheda GB (1977) Biochemistry 16:4999–5008

    Article  Google Scholar 

  16. Łodyga-Chruscinska E, Sochacka E, Smuga D, Chruściński L, Micera G, Sanna D, Turek M, Gąsiorkiewicz M (2010) J Inorg Biochem 104:570–575

    Article  PubMed  Google Scholar 

  17. Ren R, Yang P, Zheng W, Hua Z (2000) Inorg Chem 39:5454–5463

    Article  CAS  PubMed  Google Scholar 

  18. Kirin SI, Happel ChM, Hrubanova S, Weyhermüller T, Klein Ch, Metzler-Nolte N (2004) Dalton Trans 1201–1207. doi:10.1039/B313634E

  19. Lodyga-Chruscinska E, Symonowicz M, Sykula A, Bujacz A, Garribba E, Rowinska-Zyrek M, Oldziej S, Klewicka E, Janicka M, Krolewska K, Cieslak M, Brodowska K, Chruscinski L (2015) J Inorg Biochem 143:34–47

  20. González-Álvarez M, Alzuet G, Borrás J, Pitié M, Meunier B (2003) J Biol Inorg Chem 8:644–652

    Article  PubMed  Google Scholar 

  21. He J, Hu P, Wang Y-J, Tong M-L, Sun H, Mao ZW, Li L-N (2008) Dalton Trans 3207–3214. doi:10.1039/B801549J

  22. Chen XQ, Peng XJ, Wang JY, Wang Y, Wu S, Zhang LZ, Wu T, Wu YK (2007) Eur J Inorg Chem 2007:5400–5407

    Article  Google Scholar 

  23. Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) J Inorg Biochem 105:476–489

    Article  CAS  PubMed  Google Scholar 

  24. Mandal D, Chauhan M, Arjmand F, Aromi G, Ray D (2009) Dalton Trans 9183–9191. doi:10.1039/B909249H

  25. Shahabadi N, Kashanian S, Khosravi M, Mahdavi M (2010) Transition Met Chem 35:699–705

    Article  CAS  Google Scholar 

  26. Arjmand F, Jamsheera A, Mohapatra DK (2013) J Photochem Photobiol, B 121:75–85

    Article  CAS  Google Scholar 

  27. Bei Q (2012) Chin J Struct Chem 31:1187–1193

    Google Scholar 

  28. Selvakumar B, Rajendiran V, Uma Maheswari P, Stoeckli-Evans H, Palaniandavar M (2006) J Inorg Biochem 100:316–330

    Article  CAS  PubMed  Google Scholar 

  29. Ramakrishnan S, Rajendiran V, Palaniandavar M, Periasamy VS, Srinag BS, Krishnamurthy H, Akbarsha MA (2009) Inorg Chem 48:1309–1322

    Article  CAS  PubMed  Google Scholar 

  30. Li XW, Li XJ, Li YT, Wu ZY, Yan CW (2013) J Photochem Photobiol B 118:22–32

    Article  PubMed  Google Scholar 

  31. Indumathy R, Radhika S, Kanthimathi M, Weyhermuller T, Nair BU (2007) J Inorg Biochem 101:434

    Article  CAS  PubMed  Google Scholar 

  32. Kahrovic E, Zahirovic A, Turkusic E (2014) J Chem Chem Eng 8:335–343

    CAS  Google Scholar 

  33. Qian J, Ma X, Tian J, Gu W, Shang J, Liu X, Yan S (2010) J Inorg Biochem 104:993–999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of this work by Statute Funds No. I28/DzS/9184.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Justyna Borowska or Elzbieta Lodyga-Chruscinska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borowska, J., Sierant, M., Sochacka, E. et al. DNA binding and cleavage studies of copper(II) complexes with 2′-deoxyadenosine modified histidine moiety. J Biol Inorg Chem 20, 989–1004 (2015). https://doi.org/10.1007/s00775-015-1282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1282-2

Keywords

Navigation