Skip to main content
Log in

Elemental mapping of the entire intact Drosophila gastrointestinal tract

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The main role of the animal gastrointestinal (GI) tract is the selective absorption of dietary nutrients from ingested food sources. One class of vital micronutrients are the essential biometals such as copper, zinc and iron, which participate in a plethora of biological process, acting as enzymatic or structural co-factors for numerous proteins and also as important cellular signalling molecules. To help elucidate the mechanisms by which biometals are absorbed from the diet, we mapped elemental distribution in entire, intact Drosophila larval GI tracts using synchrotron X-ray fluorescence microscopy. Our results revealed distinct regions of the GI tract enriched for specific metals. Copper was found to be concentrated in the copper cell region but also in the region directly anterior to the copper cells and unexpectedly, in the middle midgut/iron cell region as well. Iron was observed exclusively in the iron cell region, confirming previous work with iron-specific histological stains. Zinc was observed throughout the GI tract with an increased accumulation in the posterior midgut region, while manganese was seen to co-localize with calcium specifically in clusters in the distal Malpighian tubules. This work simultaneously reveals distribution of a number of biologically important elements in entire, intact GI tracts. These distributions revealed not only a previously undescribed Ca/Mn co-localization, but also the unexpected presence of additional Cu accumulations in the iron cell region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuo YM et al (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci 98(12):6836–6841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci 98(12):6842–6847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dufner-Beattie J et al (2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 16(12):1391–1399

    Article  CAS  PubMed  Google Scholar 

  4. Gunshin H et al (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115(5):1258–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nose Y et al (2010) Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem 285(42):32385–32392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wang Y et al (2012) Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. Am J Physiol Gastrointest Liver Physiol 303(11):G1236–G1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dufner-Beattie J et al (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278(35):33474–33481

    Article  CAS  PubMed  Google Scholar 

  8. McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci 95(9):4841–4846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 307(4):G397–G409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cousins RJ (2010) Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res 80(4–5):243–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhou H, Cadigan KM, Thiele DJ (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278(48):48210–48218

    Article  CAS  PubMed  Google Scholar 

  12. Turski ML, Thiele DJ (2007) Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem 282(33):24017–24026

    Article  CAS  PubMed  Google Scholar 

  13. Norgate M et al (2006) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17(1):475–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Qin Q, Wang X, Zhou B (2013) Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation. BMC Biol 11:101

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. Faseb J 23(8):2650–2661

    Article  CAS  PubMed  Google Scholar 

  16. Bettedi L et al (2011) Iron depletion in the intestines of Malvolio mutant flies does not occur in the absence of a multicopper oxidase. J Exp Biol 214(Pt 6):971–978

    Article  CAS  PubMed  Google Scholar 

  17. Tang X, Zhou B (2013) Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. Faseb J 27(1):288–298

    Article  CAS  PubMed  Google Scholar 

  18. Poulson DF, Bowen VT (1952) Organization and function of the inorganic constituents of the nuclei Exp. Cell Res 2(Supplement):161–180

    Google Scholar 

  19. Mehta A et al (2009) Ferritin accumulation under iron scarcity in Drosophila iron cells. Biochimie 91(10):1331–1334

    Article  CAS  PubMed  Google Scholar 

  20. McNulty M et al (2001) Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res 304(3):383–389

    Article  CAS  PubMed  Google Scholar 

  21. Poulson DF et al (1952) The copper metabolism of Drosophila. Proc Natl Acad Sci 38(10):912–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wessing A, Zierold K, Schafer D (1988) Intracellular storage of sodium and magnesium in Drosophila Malpighian tubules. X-ray microanalysis of native cryosections. Eur J Cell Biol 47(1):1–6

    CAS  PubMed  Google Scholar 

  23. Schofield RM, Postlethwait JH, Lefevre HW (1997) MeV-ion microprobe analyses of whole Drosophila suggest that zinc and copper accumulation is regulated storage not deposit excretion. J Exp Biol 200(Pt 24):3235–3243

    CAS  PubMed  Google Scholar 

  24. Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11(2):121–127

    Article  CAS  PubMed  Google Scholar 

  25. De Samber B et al (2010) Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods. J Anal At Spectr 25:544–553

    Article  Google Scholar 

  26. Finney L et al (2007) X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci 104(7):2247–2252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lye JC et al (2011) Detection of genetically altered copper levels in Drosophila tissues by synchrotron X-ray fluorescence microscopy. PLoS One 6(10):e26867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McColl G et al (2012) Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese. PLoS One 7(2):e32685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ralle M et al (2010) Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. J Biol Chem 285(40):30875–30883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Paterson D et al (2011) The X-ray fluorescence microscopy beamline at the Australian Synchrotron. AIP Conf Proc 1365:219–222

    Article  Google Scholar 

  31. Kirkham R et al (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, low latency scanning and realtime processing. AIP Conf Proc 1234:240–243

    Article  CAS  Google Scholar 

  32. Ryan CG et al (2005) Nuclear microprobe–synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF. Nucl Instrum Methods Phys Res B 231:183–188

    Article  CAS  Google Scholar 

  33. James SA et al (2011) Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue. Anal Bioanal Chem 401:853–864

    Article  CAS  PubMed  Google Scholar 

  34. He W, Hu Z (2012) The role of the Golgi-resident SPCA Ca(2)(+)/Mn(2)(+) pump in ionic homeostasis and neural function. Neurochem Res 37(3):455–468

    Article  CAS  PubMed  Google Scholar 

  35. Southall TD et al (2006) Novel subcellular locations and functions for secretory pathway Ca2+/Mn2+-ATPases. Physiol Genomics 26(1):35–45

    Article  CAS  PubMed  Google Scholar 

  36. Chi T et al (2015) A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 10(5):e0124150

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gutierrez L et al (2010) Zinc accumulation in heterozygous mutants of fumble, the pantothenate kinase homologue of Drosophila. FEBS Lett 584:2942–2946

    Article  CAS  PubMed  Google Scholar 

  38. Selvaraj A et al (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19(8):891–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Burke R, Commons E, Camakaris J (2008) Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem Cell Biol 40(9):1850–1860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was undertaken on the XFM beamline at the Australian Synchrotron, Victoria, Australia. The authors acknowledge experimental assistance from Daryl L. Howard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Burke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M.W.M., de Jonge, M.D., James, S.A. et al. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J Biol Inorg Chem 20, 979–987 (2015). https://doi.org/10.1007/s00775-015-1281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1281-3

Keywords

Navigation