Skip to main content
Log in

The antimetastatic drug NAMI-A potentiates the phenylephrine-induced contraction of aortic smooth muscle cells and induces a transient increase in systolic blood pressure

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The ruthenium-based drug imidazolium trans-imidazoledimethylsulphoxidetetrachlorido ruthenate (NAMI-A) is a novel antitumour drug under clinical evaluation. In this study, NAMI-A is tested on aortic rings in vitro and on the systolic blood pressure in vivo with the aim of evaluating its effects on smooth muscle cells and, more in general, on the vascular system. Pre-incubation of aortic rings with 10 µM NAMI-A for 10 min potentiates the contraction induced by phenylephrine (PE). The reduction of the B max value of [3H]-prazosin bound to NAMI-A-treated aortic rings and the ability of NAMI-A to displace [3H]-prazosin and [3H]-IP3 binding by 25 and 42 %, respectively, suggest the involvement of α1-adrenoceptor in mediating the effects on smooth muscle cells. NAMI-A also decreases the number of maximal sites of [3H]-prazosin bound to kidney membrane preparation from 34 to 24 fmol/mg proteins. A single i.p. dose (105 mg/kg) or a repeated treatment for 6 consecutive days (17 mg/kg/day) in Wistar rats increases the systolic blood pressure, respectively, 1 h and 3 days after treatment, and the responsiveness of rat aortic rings to PE. Atomic absorption spectroscopy confirms the presence of ruthenium in the aortic rings excised from the treated rats. These findings suggest monitoring the cardiovascular parameters when the drug is used in humans for treating cancer patients, particularly if the drug is associated with chemicals that are potentially active at the cardiovascular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergamo A, Delfino R, Casarsa C, Sava G (2012) Anticancer Agents Med Chem 12:949–958

    Article  CAS  PubMed  Google Scholar 

  2. Brabec V, Novakova O (2006) Drug Resist Updat 9:111–122

    Article  CAS  PubMed  Google Scholar 

  3. Levina A, Mitra A, Lay PA (2009) Metallomics 1:458–470

    Article  CAS  PubMed  Google Scholar 

  4. Sava G, Gagliardi R, Bergamo A, Alessio E, Mestroni G (1999) Anticancer Res 19:969–972

    CAS  PubMed  Google Scholar 

  5. Kostova I (2006) Curr Med Chem 13:1085–1107

    Article  CAS  PubMed  Google Scholar 

  6. Koiri RK, Mehrotra A, Trigun SK (2013) Med Hypotheses 80:841–846

    Article  CAS  PubMed  Google Scholar 

  7. Bergamo A, Sava G (2011) Dalton Trans 40:7817–7823

    Article  CAS  PubMed  Google Scholar 

  8. Sava G, Jaouen G, Hillard EA, Bergamo A (2012) Dalton Trans 41:8226–8234

    Article  CAS  PubMed  Google Scholar 

  9. Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, van Werkhoven E, Alessio E, Sava G, Beijnen JH, Schellens JH (2015) Invest New Drugs 33:201–214

    Article  CAS  PubMed  Google Scholar 

  10. Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E, Mestroni G (1998) Clin Exp Metastasis 16:371–379

    Article  CAS  PubMed  Google Scholar 

  11. Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S (2003) Clin Cancer Res 9:1898–1905

    CAS  PubMed  Google Scholar 

  12. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) Clin Cancer Res 10:3717–3727

    Article  CAS  PubMed  Google Scholar 

  13. Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) J Pharmacol Exp Ther 289:559–564

    CAS  PubMed  Google Scholar 

  14. Vadori M, Pacor S, Vita F, Zorzet S, Cocchietto M, Sava G (2013) J Inorg Biochem 118:21–27

    Article  CAS  PubMed  Google Scholar 

  15. Bergamo A, Riedel T, Dyson PJ, Sava G (2015) Invest New Drugs 33:53–63

    Article  CAS  PubMed  Google Scholar 

  16. Coluccia M, Sava G, Salerno G, Bergamo A, Pacor S, Mestroni G, Alessio E (1995) Met Based Drugs 2:195–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Khalaila I, Bergamo A, Bussy F, Sava G, Dyson PJ (2006) Int J Oncol 29:261–268

    CAS  PubMed  Google Scholar 

  18. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Cardiology 115:155–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA (2010) Br J Cancer 102:1555–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stassen FR, Maas RG, Schiffers PM, Janssen GM, De Mey JG (1998) J Pharmacol Exp Ther 284:399–405

    CAS  PubMed  Google Scholar 

  21. Bouma M, Nuijen B, Sava G, Perbellini A, Flaibani A, van Steenbergen MJ, Talsma H, Ketten-van den Bosch JJ, Bult A, Beijnen JH (2002) Int J Pharm 248:247–259

    Article  CAS  PubMed  Google Scholar 

  22. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Pharmacol Rev 49:157–230

    CAS  PubMed  Google Scholar 

  23. Herrmann-Frank A, Darling E, Meissner G (1991) Pflugers Arch 418:353–359

    Article  CAS  PubMed  Google Scholar 

  24. Garcha RS, Hughes AD (1994) Eur J Pharmacol 268:319–325

    Article  CAS  PubMed  Google Scholar 

  25. Wu D, Katz A, Lee CH, Simon MI (1992) J Biol Chem 267:25798–25802

    CAS  PubMed  Google Scholar 

  26. Duchen MR (2000) J Physiol (Lond) 529(Pt 1):57–68

    Article  CAS  Google Scholar 

  27. Unitt JF, Boden KL, Wallace AV, Ingall AH, Coombs ME, Ince F (1999) Bioorg Med Chem 7:1891–1896

    Article  CAS  PubMed  Google Scholar 

  28. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) J Biol Chem 273:10223–10231

    Article  CAS  PubMed  Google Scholar 

  29. Katsuki S, Arnold W, Mittal C, Murad F (1977) J Cyclic Nucleotide Res 3:23–35

    CAS  PubMed  Google Scholar 

  30. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Proc Natl Acad Sci USA 74:3203–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Miki N, Kawabe Y, Kuriyama K (1977) Biochem Biophys Res Commun 75:851–856

    Article  CAS  PubMed  Google Scholar 

  32. Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P, Sava G, Ziche M (2003) Br J Cancer 88:1484–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Eur J Biochem 269:5861–5870

    Article  CAS  PubMed  Google Scholar 

  34. Sanna B, Debidda M, Pintus G, Tadolini B, Posadino AM, Bennardini F, Sava G, Ventura C (2002) Arch Biochem Biophys 403:209–218

    Article  CAS  PubMed  Google Scholar 

  35. Pillozzi S, Gasparoli L, Stefanini M, Ristori M, D’Amico M, Alessio E, Scaletti F, Becchetti A, Arcangeli A, Messori L (2014) Dalton Trans 43:12150–12155

    Article  CAS  PubMed  Google Scholar 

  36. Cocchietto M, Salerno G, Alessio E, Mestroni G, Sava G (2000) Anticancer Res 20:197–202

    CAS  PubMed  Google Scholar 

  37. Trynda-Lemiesz L, Karaczyn A, Keppler BK, Kozlowski H (2000) J Inorg Biochem 78:341–346

    Article  CAS  PubMed  Google Scholar 

  38. Messori L, Orioli P, Vullo D, Alessio E, Iengo E (2000) Eur J Biochem 267:1206–1213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work supported with grants of the Callerio Foundation Onlus (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadori, M., Florio, C., Groppo, B. et al. The antimetastatic drug NAMI-A potentiates the phenylephrine-induced contraction of aortic smooth muscle cells and induces a transient increase in systolic blood pressure. J Biol Inorg Chem 20, 831–840 (2015). https://doi.org/10.1007/s00775-015-1269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1269-z

Keywords

Navigation