Skip to main content
Log in

An effective method for profiling the selenium-binding proteins using its reactive metabolic intermediate

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Currently, the intracellular reduction and/or transport of selenium still remain unknown. Certain reduced forms of selenium species are thought to be reactive with various endogenous molecules, particularly thiol-containing proteins. In this study, a profiling method for identifying the selenium-binding proteins using l-penicillamine selenotrisulfide (PenSSeSPen) as a model of the selenium metabolic intermediate was applied to the cell lysate generated from the rat liver. Several proteins with cysteine thiol were found to be reactive with PenSSeSPen through the thiol-exchange reaction by MALDI TOF–MS analysis. The most distinctive cysteine-containing protein at m/z 14,313 in the liver cell lysate was identified as the liver fatty acid-binding protein based on a rat protein database search and a tryptic fragmentation experiment. This methodology could be used for determining the selenium-binding proteins and/or selenium-interactive species and provide a better understanding of the selenium metabolism and utilization in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cys:

l-Cysteine

DAN:

2,3-Diaminonaphthalene

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

GPx:

Glutathione peroxidase

GSH:

Glutathione in the reduced form

LFABP:

Liver fatty acid-binding protein

MALDI TOF–MS:

Matrix-assisted laser desorption ionization time of flight-mass spectrometry

NEM:

N-Ethylmaleimide

Pen:

L-Penicillamine

PenSSeSPen:

L-Penicillamine selenotrisulfide

SeCys, Sec and U:

l-Selenocysteine

STS:

Selenotrisulfide

References

  1. Schwarz K, Foltz CM (1957) J Am Chem Soc 79:3292–3293

    Article  CAS  Google Scholar 

  2. Kryukov VG, Castellrano S, Novoselov SV, Labanov AV, Zehtab O, Guigo R, Gladyshev V (2003) Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  3. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2007) FEBS J 275:3959–3970

    Article  Google Scholar 

  4. Moghadaszadeh B, Beggs AH (2006) Physiology 21:307–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rayman M (2012) Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  6. Berry MJ, Banu L, Chen Y, Mandel SL, Kiefer JD, Harney JW, Larsen PR (1991) Nature 353: 273–276

    Article  CAS  PubMed  Google Scholar 

  7. Weekley CM, Harris HH (2013) Chem Soc Rev 42:8870–8894

    Article  CAS  PubMed  Google Scholar 

  8. Veres Z, Kim IY, Scholzg TD, Stadtman TC (1994) J Biol Chem 269:10597–10603

    CAS  PubMed  Google Scholar 

  9. Ganther HE, Corcoran C (1969) Biochemistry 8:2557–2563

    Article  CAS  PubMed  Google Scholar 

  10. Self WT, Tsai L, Stadtman TC (2000) Proc Natl Acad Sci 97:12481–12486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ogasawara Y, Lacourciere G, Stadtman TC (2001) Proc Natl Acad Sci 98:9494–9498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Haratake M, Hongoh M, Miyauchi M, Hirakawa R, Ono M, Nakayama M (2008) Inorg Chem 47:6273–6280

    Article  CAS  PubMed  Google Scholar 

  13. Haratake M, Fujimoto K, Hirakawa R, Ono M, Nakayama M (2008) J Biol Inorg Chem 13:471–479

    Article  CAS  PubMed  Google Scholar 

  14. Medina D, Morrison DG (1988) Pathol Zmmunopathol Res 7:187–199

    Article  CAS  Google Scholar 

  15. Hawkes WC, Wilkerson EC, Tappel AL (1985) J Inorg Biochem 23:77–92

    Article  CAS  PubMed  Google Scholar 

  16. Danielson KG, Medina D (1986) Cancer Res 46:4582–4589

    CAS  PubMed  Google Scholar 

  17. Yang J-G, Morrison-Plummer J, Burk RF (1987) J Biol Chem 262:13372–13376

    CAS  PubMed  Google Scholar 

  18. Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Biochim Biophys Acta 966:12–21

    Article  CAS  PubMed  Google Scholar 

  19. Bansal MP, Cook RG, Danielson KG, Medina D (1989) J Biol Chem 264:13780–13784

    CAS  PubMed  Google Scholar 

  20. Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC (2000) J Biol Chem 275:23769–23773

    Article  CAS  PubMed  Google Scholar 

  21. Lindemann T, Hintelmann H (2002) Anal Chem 74:4602–4610

    Article  CAS  PubMed  Google Scholar 

  22. Haratake M, Fujimoto K, Ono M, Nakayama M (2005) Biochim Biophys Acta 1723:215–220

    Article  CAS  PubMed  Google Scholar 

  23. Haratake M, Hongoh M, Ono M, Nakayama M (2009) Inorg Chem 48:7805–7811

    Article  CAS  PubMed  Google Scholar 

  24. Hongoh M, Haratake M, Fuchigami T, Nakayama M (2012) Dalton Trans 41:7340–7349

    Article  CAS  PubMed  Google Scholar 

  25. Navarro-Alarcon M, Cabrera-Vique C (2008) Sci Total Environ 400:115–141

    Article  CAS  PubMed  Google Scholar 

  26. Haratake M, Ono M, Nakayama M (2004) J Health Sci 50:366–371

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Watkinson JH (1966) Anal Chem 38:92–97

    Article  CAS  PubMed  Google Scholar 

  29. Ellman GL (1958) Arch Biochem Biophys 74:443–450

    Article  CAS  PubMed  Google Scholar 

  30. Ilbert M, Horst J, Ahrens S, Winter J, Graf PC, Lilie H, Jakob U (2007) Nat Struct Mol Biol 14:556–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fernandes PA, Ramos MJ (2004) Chem Eur J 10:257–266

    Article  CAS  PubMed  Google Scholar 

  32. Tang SS, Chang GGJ (1996) Biochemistry 119:1182–1188

    Article  CAS  Google Scholar 

  33. Copley SD, Novak WRP, Babbitt PC (2004) Biochemistry 43:13981–13995

    Article  CAS  PubMed  Google Scholar 

  34. Wang P-F, McLeish MJ, Kneen MM, Lee G, Kenyon GL (2001) Biochemistry 40:11698–11705

    Article  CAS  PubMed  Google Scholar 

  35. Shaked Z, Szajewski RP, Whitesides GM (1980) Biochemistry 19:4156–4166

    Article  CAS  PubMed  Google Scholar 

  36. Chalker JM, Bernardes GJL, Lin YA, Davis BG (2009) Chem Asian J 4:630–640

    Article  CAS  PubMed  Google Scholar 

  37. Bulaj G, Kortemme T, Goldenberg DP (1998) Biochemistry 37:8965–8972

    Article  CAS  PubMed  Google Scholar 

  38. Bassuk JA, Tsichlis PN, Sorof S (1987) Proc Natl Acad Sci 84:7547–7551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F (2010) J Nutr Biochem 21:1015–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Thompson J, Winter N, Terwey D, Bratt J, Banaszak L (1997) J Biol Chem 272:7140–7150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mamoru Haratake or Morio Nakayama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hori, E., Yoshida, S., Haratake, M. et al. An effective method for profiling the selenium-binding proteins using its reactive metabolic intermediate. J Biol Inorg Chem 20, 781–789 (2015). https://doi.org/10.1007/s00775-015-1265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1265-3

Keywords

Navigation