Skip to main content

Advertisement

Log in

Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Heme–Aβ complexes are known to produce toxic partially reduced oxygen species (PROS), catalyze oxidation of neurotransmitters and have been associated with Alzheimer’s disease (AD). Neuroglobin (Ngb) play a crucial neuroprotective role against oxidative damage, hypoxic injuries, stroke and apoptosis of neuronal cells. In this study, the interaction of heme–Aβ with apoNeuroglobin (apoNgb) has been investigated using a combination of spectroscopic techniques. Absorption and resonance Raman data confirm that apoNgb can uptake heme from heme–Aβ and constitute a six-coordinate low-spin ferric heme-active site identical to that of Ngb. ApoNgb can also uptake heme from reduced heme–Aβ resulting in the formation of ferrous Ngb. The rate of the heme transfer reaction has been found to be of the order of 106 M−1 s−1. The reaction is faster for oxidized heme–Aβ than the reduced form. The amount of PROS formation by heme–Aβ complexes has been found to diminish drastically after reaction with apoNgb. ApoNgb can also sequester ligand-bound heme from heme–Aβ, e.g., the CO-bound heme from heme–Aβ–CO complex resulting in the formation of Ngb–CO complex. Additionally, ApoNgb can sequester heme from self-assembled monolayer (SAM) of surface-bound heme–Aβ formed over Au surface. This heme sequestration by apoNgb from heme–Aβ not only diminishes heme-induced toxicity but more significantly it produces Ngb which has well-documented neuroprotective role and can thereby potentially reduce risks associated with AD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the TyrO· radical, its dimerized or oxidized species is yet to be detected (Figure S7) and is currently under investigation.

References

  1. Rauk A (2009) Chem Soc Rev 38:2698

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ (2002) Science 298:789

    Article  CAS  PubMed  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) Science 297:353

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe DJ (2001) Physiol Rev 81:741

    CAS  PubMed  Google Scholar 

  5. Glenner GG, Wong CW (1984) Biochem Biophys Res Commun 120:885

    Article  CAS  PubMed  Google Scholar 

  6. Faller P, Hureau C (2009) Dalton Trans 7:1080

    Article  PubMed  Google Scholar 

  7. Tabner BJ, Turnbull S, El-Agnaf OMA, Allsop D (2002) Free Radic Biol Med 32:1076

    Article  CAS  PubMed  Google Scholar 

  8. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) Nature 325:733

    Article  CAS  PubMed  Google Scholar 

  9. Selkoe DJ (1999) Nature 399:A23

    Article  CAS  PubMed  Google Scholar 

  10. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis J-C, Collins F, Treanor J, Rogers G, Citron M (1999) Science 286:735

    Article  CAS  PubMed  Google Scholar 

  11. Klein WL, Stine WB Jr, Teplow DB (2004) Neurobiol Aging 25:569

    Article  CAS  PubMed  Google Scholar 

  12. Haass C, Selkoe DJ (2007) Nat Rev Mol Cell Biol 8:101

    Article  CAS  PubMed  Google Scholar 

  13. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2011) J Neurochem 120:149

    Article  PubMed  Google Scholar 

  14. Faller P, Hureau C, La Penna G (2014) Acc Chem Res 47:2252

    Article  CAS  PubMed  Google Scholar 

  15. Shi H, Kang B, Lee JY (2014) J Phys Chem B 118:10355

    Article  CAS  PubMed  Google Scholar 

  16. Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A (2013) ChemBioChem 14:1692

    Article  PubMed  Google Scholar 

  17. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47

    Article  CAS  PubMed  Google Scholar 

  18. Barnham KJ, Bush AI (2014) Chem Soc Rev 43:6727

    Article  CAS  PubMed  Google Scholar 

  19. Bush AI (2003) Trends Neurosci 26:207

    Article  CAS  PubMed  Google Scholar 

  20. Smith DG, Cappai R, Barnham KJ (2007) Biochim Biophys Acta 1768:1976

    Article  CAS  PubMed  Google Scholar 

  21. Bush AI, Masters CL, Tanzi RE (2003) Proc Natl Acad Sci USA 100:11193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Guilloreau L, Combalbert S, Sournia-Saquet A, Mazarguil H, Faller P (2007) ChemBioChem 8:1317

    Article  CAS  PubMed  Google Scholar 

  23. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) J Biol Chem 276:20466

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh C, Dey SG (2013) Inorg Chem 52:1318

    Article  CAS  PubMed  Google Scholar 

  25. Murray IVJ, Sindoni ME, Axelsen PH (2005) Biochemistry 44:12606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sayre LM, Zelasko DA, Harris PLR, Perry G, Salomon RG, Smith MA (1997) J Neurochem 68:2092

    Article  CAS  PubMed  Google Scholar 

  27. Atamna H, Frey WH (2004) Proc Natl Acad Sci USA 101:11153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pramanik D, Ghosh C, Mukherjee S, Dey SG (2013) Coord Chem Rev 257:81

    Article  CAS  Google Scholar 

  29. Atamna H, Liu J, Ames BN (2001) J Biol Chem 276:48410

    CAS  PubMed  Google Scholar 

  30. Schipper HM, Cissé S, Stopa EG (1995) Ann Neurol 37:758

    Article  CAS  PubMed  Google Scholar 

  31. Atamna H, Frey Ii WH, Ko N (2009) Arch Biochem Biophys 487:59

    Article  CAS  PubMed  Google Scholar 

  32. Atamna H, Boyle K (2006) Proc Natl Acad Sci USA 103:3381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Pramanik D, Dey SGJ (2011) Am Soc Chem 133:81

    Article  CAS  Google Scholar 

  34. Yuan C, Yi L, Yang Z, Deng Q, Huang Y, Li H, Gao Z (2012) J Biol Inorg Chem 17:197

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Y, Wang J, Liu L, Wang R, Lai X, Xu M (2013) ACS Chem Neurosci 4:535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Thiabaud G, Pizzocaro S, Garcia-Serres R, Latour J-M, Monzani E, Casella L (2013) Angew Chem Int Ed 52:8041

    Article  CAS  Google Scholar 

  37. Mukherjee S, Seal M, Dey SG (2014) J Biol Inorg Chem 19:1355

    Article  CAS  PubMed  Google Scholar 

  38. Seal M, Mukherjee S, Pramanik D, Mittra K, Dey A, Dey SG (2013) Chem Commun 49:1091

    Article  CAS  Google Scholar 

  39. Pramanik D, Ghosh C, Dey SG (2011) Am Soc Chem 133:15545

    Article  CAS  Google Scholar 

  40. Azimi S, Rauk A (2013) J Chem Theory Comput 9:4233

    Article  CAS  Google Scholar 

  41. Hardison RC (1996) Proc Natl Acad Sci USA 93:5675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shikama K (2006) Prog Biophys Mol Biol 91:83

    Article  CAS  PubMed  Google Scholar 

  43. Takano T (1977) J Mol Biol 110:569

    Article  CAS  PubMed  Google Scholar 

  44. Garry DJ, Meeson A, Yan Z, Williams RS (2000) Cell Mol Life Sci 57:896

    Article  CAS  PubMed  Google Scholar 

  45. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) Nature 407:520

    Article  CAS  PubMed  Google Scholar 

  46. Moens L, Dewilde S (2000) Nature 407:461

    Article  CAS  PubMed  Google Scholar 

  47. Hargrove MS, Brucker EA, Stec B, Sarath G, Arredondo-Peter RL, Klucas RV, Olson JS, Phillips GN Jr (2000) Structure 8:1005

    Article  CAS  PubMed  Google Scholar 

  48. Trent JT, Hargrove MS (2002) J Biol Chem 277:19538

    Article  CAS  PubMed  Google Scholar 

  49. Burmester T, Ebner B, Weich B, Hankeln T (2002) Mol Biol Evol 19:416

    Article  CAS  PubMed  Google Scholar 

  50. Sawai H, Makino M, Mizutani Y, Ohta T, Sugimoto H, Uno T, Kawada N, Yoshizato K, Kitagawa T, Shiro Y (2005) Biochemistry 44:13257

    Article  CAS  PubMed  Google Scholar 

  51. Kundu S, Trent JT III, Hargrove MS (2003) Trends Plant Sci 8:387

    Article  CAS  PubMed  Google Scholar 

  52. Goodman MD, Hargrove MS (2001) J Biol Chem 276:6834

    Article  CAS  PubMed  Google Scholar 

  53. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, Sanctis DD, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) J Inorg Biochem 99:110

    Article  CAS  PubMed  Google Scholar 

  54. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) EMBO Rep 3:1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Schmidt M, Giessl A, Laufs T, Hankeln T, Wolfrum U, Burmester T (2003) J Biol Chem 278:1932

    Article  CAS  PubMed  Google Scholar 

  56. Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Structure 11:1087

    Article  CAS  PubMed  Google Scholar 

  57. Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L (2001) J Biol Chem 276:38949

    Article  CAS  PubMed  Google Scholar 

  58. Couture M, Burmester T, Hankeln T, Rousseau DL (2001) J Biol Chem 276:36377

    Article  CAS  PubMed  Google Scholar 

  59. Kriegl JM, Bhattacharyya AJ, Nienhaus K, Deng P, Minkow O, Nienhaus GU (2002) Proc Natl Acad Sci USA 99:7992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Burmester T, Hankeln T (2009) J Exp Biol 212:1423

    Article  CAS  PubMed  Google Scholar 

  61. Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D (2008) Brain Res 1190:159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Weber RE, Fago A (2004) Respir Physiol Neurobiol 144:141

    Article  CAS  PubMed  Google Scholar 

  63. Burmester T, Gerlach F, Hankeln T (2007) Regulation and role of neuroglobin and cytoglobin under hypoxia. In: Roach R, Wagner P, Hackett P (eds) Hypoxia and the Circulation, vol 618. Springer, p 169

  64. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Proc Natl Acad Sci USA 98:15306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA (2003) Proc Natl Acad Sci USA 100:3497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Duong TTH, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH (2009) J Neurochem 108:1143

    Article  CAS  PubMed  Google Scholar 

  67. Jin K, Mao XO, Xie L, Khan AA, Greenberg DA (2008) Neurosci Lett 430:135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Fordel E, Thijs L, Moens L, Dewilde S (2007) FEBS J 274:1312

    Article  CAS  PubMed  Google Scholar 

  69. Herold S, Fago A (2005) Comp Biochem Physiol Part A Mol Integr Physiol 142:124

    Article  Google Scholar 

  70. Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T (2006) FEBS Lett 580:4884

    Article  CAS  PubMed  Google Scholar 

  71. Szymanski M, Wang R, Fallin MD, Bassett SS, Avramopoulos D (2010) Neurobiol Aging 31:1835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Chen L-M, Xiong Y-S, Kong F-L, Qu M, Wang Q, Chen X-Q, Wang J-Z, Zhu L-Q (2012) J Neurochem 120:157

    Article  CAS  PubMed  Google Scholar 

  73. Sun F, Mao X, Xie L, Greenberg DA, Jin K (2013) J Alzheimers Dis 36:659

    CAS  PubMed  Google Scholar 

  74. Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA (2007) Proc Natl Acad Sci USA 104:19114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hargrove MS, Barrick D, Olson JS (1996) Biochemistry 35:11293

    Article  CAS  PubMed  Google Scholar 

  76. Pramanik D, Mukherjee S, Dey SG (2013) Inorg Chem 52:10929

    Article  CAS  PubMed  Google Scholar 

  77. Teale FWJ (1959) Biochim Biophys Acta 35:543

    Article  CAS  PubMed  Google Scholar 

  78. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  PubMed  Google Scholar 

  79. Jiang Z-Y, Woollard ACS, Wolff SP (1990) FEBS Lett 268:69

    Article  CAS  PubMed  Google Scholar 

  80. Spiro TG, Strekas TCJ (1974) Am Soc Chem 96:338

    Article  CAS  Google Scholar 

  81. Burke JM, Kincaid JR, Peters S, Gagne RR, Collman JP, Spiro TGJ (1978) Am Soc Chem 100:6083

    Article  CAS  Google Scholar 

  82. Spiro TG, Burke JMJ (1976) Am Soc Chem 98:5482

    Article  CAS  Google Scholar 

  83. Choi S, Spiro TGJ (1983) Am Soc Chem 105:3683

    Article  CAS  Google Scholar 

  84. Uno T, Ryu D, Tsutsumi H, Tomisugi Y, Ishikawa Y, Wilkinson AJ, Sato H, Hayashi T (2004) J Biol Chem 279:5886

    Article  CAS  PubMed  Google Scholar 

  85. Sengupta K, Chatterjee S, Pramanik D, Dey SG, Dey A (2014) Dalton Trans 43:13377

    Article  CAS  PubMed  Google Scholar 

  86. Pramanik D, Sengupta K, Mukherjee S, Dey SG, Dey A (2012) Am Soc Chem 134:12180

    Article  CAS  Google Scholar 

  87. Giordano D, Boron I, Abbruzzetti S, Van Leuven W, Nicoletti FP, Forti F, Bruno S, Cheng CHC, Moens L, di Prisco G, Nadra AD, Estrin D, Smulevich G, Dewilde S, Viappiani C, Verde C (2012) PLoS One 7:e44508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Trent JT, Watts RA, Hargrove MS (2001) J Biol Chem 276:30106

    Article  CAS  PubMed  Google Scholar 

  89. Van Doorslaer S, Dewilde S, Kiger L, Nistor SV, Goovaerts E, Marden MC, Moens L (2003) J Biol Chem 278:4919

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank SERC Fast Track Scheme SR/FT/CS-34/2010, Department of Science and Technology, Government of India and IACS for funding this research. M. S. is thankful to IACS-integrated Ph.D. programme for Senior Research Fellowship. SU acknowledges research fellowship from CSIR, Government of India. SK thanks University of Delhi (R&D), UGC and DBT for financial support. We thank Dr. Abhishek Dey for helpful discussions and for the access of the resonance Raman (DST, India, Grant-SR/IC-35/2009) and AFM instruments (DST, India, Grant-SB/S1/IC-25/2013). We also thank Kushal Sengupta for help with CV and AFM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Ghosh Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2015_1241_MOESM1_ESM.pdf

Absorption spectra of heme(III)-Aβ(1–40) + apoNgb and separated samples after filtration, absorption spectra of Heme(III)-Aβ(1–16) + apoNgb, absorption spectra of Heme(II)-Aβ(1–16) + apoNgb, high-frequency resonance Raman spectra of heme(III)-Aβ(1–16) + apoNgb, high-frequency resonance Raman spectra of heme(II)-Aβ(1–16) + apoNgb, kinetic traces for heme sequestration by apoNgb for heme(III)-Aβ(1–16), kinetic traces for heme sequestration by apoNgb for heme(II)-Aβ(1–16) in presence of excess dithionite, absorption and EPR spectra of oxidized, reduced and reoxidized heme-Aβ, amount of PROS detected with heme(III)-Aβ, absorption spectra of oxy-complex of Ngb, absorption spectra of heme-Aβ formed over SAM of AβCys, titration curve for heme sequestration from heme-Aβ with different equivalents of apoNgb, absorption spectra for heme-CO sequestration from heme-Aβ–CO complex with higher equivalent of apoNgb (PDF 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, M., Uppal, S., Kundu, S. et al. Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease. J Biol Inorg Chem 20, 563–574 (2015). https://doi.org/10.1007/s00775-015-1241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1241-y

Keywords

Navigation