Skip to main content

Advertisement

Log in

Molybdenum and tungsten-dependent formate dehydrogenases

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The prokaryotic formate metabolism is considerably diversified. Prokaryotes use formate in the C1 metabolism, but also evolved to exploit the low reduction potential of formate to derive energy, by coupling its oxidation to the reduction of numerous electron acceptors. To fulfil these varied physiological roles, different types of formate dehydrogenase (FDH) enzymes have evolved to catalyse the reversible 2-electron oxidation of formate to carbon dioxide. This review will highlight our present knowledge about the diverse physiological roles of FDH in prokaryotes, their modular structural organisation and active site structures and the mechanistic strategies followed to accomplish the formate oxidation. In addition, the ability of FDH to catalyse the reverse reaction of carbon dioxide reduction, a potentially relevant reaction for carbon dioxide sequestration, will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The Oligotropha carboxidovorans CO dehydrogenase with its unique binuclear copper–molybdenum cofactor is, however, presently classified under the xanthine oxidase family of mononuclear molybdoenzymes.

  2. Respiratory nitrate reductases are membrane-bound cytoplasm-faced molybdoenzymes and, as the name indicates, are used by the organisms to generate a proton motive force across the cytoplasmatic membrane [135137]. They are also called NarGHI, because they are the product of the narG, H, and I genes. These enzymes, belonging to the DMSOR family, are heterotrimers, comprising: (i) a cytoplasmatic nitrate-reducing NarG subunit (≈125 kDa) that holds one molybdenum centre and one [4Fe–4S] centre; the molybdenum atom is coordinated by four sulfur atoms (from the two pyranopterin cofactor molecules) and two oxygen atoms (both from an aspartate residue or one from a terminal oxo group plus another one from an aspartate residue [136]); (ii) an electron-transfer NarH subunit (≈60 kDa) that holds one [3Fe–4S] and three [4Fe–4S] centres; and (iii) a membrane-bound quinol-oxidising NarI subunit (≈22 kDa) that holds two b-type haems.

Abbreviations

DMSOR:

Dimethylsulfoxide reductase

EPR:

Electron paramagnetic resonance spectroscopy

FDH:

Formate dehydrogenase

FDH-H:

E. coli formate dehydrogenase H, from the formate-hydrogen lyase system

FDH-N:

E. coli formate dehydrogenase N, from the anaerobic nitrate–formate respiratory pathway

FDH-O:

E. coli formate dehydrogenase O, from the aerobic respiratory pathways

Fe/S:

Iron–sulfur centre

Mo-FDH:

Molybdenum-dependent formate dehydrogenase

Mo/W-FDH:

Formate dehydrogenase that incorporates either molybdenum or tungsten

Mo/NAD-FDH:

Molybdenum-dependent/NAD-dependent formate dehydrogenase

Mo/W-bis PGD:

Molybdenum/tungsten-bis pyranopterin guanosine dinucleotide-containing enzymes

NAD-FDH:

NAD-dependent formate dehydrogenase

NarGHI:

Respiratory nitrate reductase, after the name of the encoding genes, narG, H, and I

PGD:

Pyranopterin guanosine dinucleotide cofactor

W/NAD-FDH:

Tungsten-dependent/NAD-dependent formate dehydrogenase

W-FDH:

Tungsten-dependent formate dehydrogenase

References

  1. Thauer RK, Jungermann K, Decker K (1977) Bacteriol Rev 41:100–180

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Sakami W (1948) J Biol Chem 176:995–1003

    CAS  PubMed  Google Scholar 

  3. Hartman SC, Buchanan JM (1959) Ann Rev Biochem 28:365–410

    CAS  PubMed  Google Scholar 

  4. Tibbetts AS, Appling DR (2010) Ann Rev Nutr 30:57–81

    CAS  Google Scholar 

  5. Cook RJ, Champion KM, Giometti CS (2001) Arch Biochem Biophys 393:192–198

    CAS  PubMed  Google Scholar 

  6. Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV, Krupenko SA (2010) J Biol Chem 285:23056–23063

    PubMed Central  CAS  PubMed  Google Scholar 

  7. des Francs-Small CC, Ambard-Bretteville F, Darpas A, Sallantin M, Huet J-C, Pernollet J-C, Remy R (1992) Plant Physiol 98:273–278

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Igamberdiev AU, Bykova NV, Kleczkowski LA (1999) Plant Physiol Biochem 37:503–513

    CAS  Google Scholar 

  9. David P, des Francs-Small CC, Sevignac M, Thareau V, Macadre C, Langin T, Geffroy V (2010) Theor Appl Genet 121:87–103

    CAS  PubMed  Google Scholar 

  10. Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Remy R, des Francs-Small CC (1998) Plant Physiol 116:627–635

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Suzuki K, Itai R, Suzuki K, Nakanishi H, Nishizawa N-K, Yoshimura E, Mori S (1998) Plant Physiol 116:725–732

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Thompson P, Bowsher CG, Tobin AK (1998) Plant Physiol 118:1089–1099

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Andreadeli A, Flemetakis E, Axarli I, Dimou M, Udvardi MK, Katinakis P, Labrou NE (2009) Biochim Biophys Acta 1794:976–984

    CAS  PubMed  Google Scholar 

  14. Thauer RK, Fuchs G, Jungermann K (1977) In: Lovenber W (ed) Iron–sulfur proteins. Academic, New York, pp 121–156

    Google Scholar 

  15. Stubbe JA, van der Donk WA (1998) Chem Rev 98:705–762

    CAS  PubMed  Google Scholar 

  16. Maden BEH (2000) Biochem J 350:609–629

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Adams MWW, Mortenson LE (1985) In: Spiro TG (ed) Molybdenum enzymes. Wiley, New York, pp 519–593

    Google Scholar 

  18. Ferry JG (1990) FEMS Microbiol Rev 7:377–382

    CAS  PubMed  Google Scholar 

  19. Unden G, Bongaerts J (1997) Biochim Biophys Acta 1320:217–234

    CAS  PubMed  Google Scholar 

  20. Richardson DJ (2000) Microbiology 146:551–571

    CAS  PubMed  Google Scholar 

  21. Richardson D, Sawers G (2002) Science 295:1842–1843

    CAS  PubMed  Google Scholar 

  22. Vorholt JA, Thauer RK (2002) Metals ions in biological system. In: Sigel A, Sigel H (eds) Molybdenum and tungsten: their roles in biological processes, vol 39. CRC Press, USA, pp 571–619

    Google Scholar 

  23. Sawers RB (2005) Biochem Soc Trans 33:42–46

    CAS  PubMed  Google Scholar 

  24. Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Crit Rev Biochem Mol Biol 47:236–249

    CAS  PubMed  Google Scholar 

  25. Bagramyan K, Trchounian A (2003) Biochem Moscow 68:1159–1163

    CAS  Google Scholar 

  26. Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A (2013) Biochem Biophys Acta 1827:1048–1085

    CAS  PubMed  Google Scholar 

  27. Sawers G (1994) A v Leeuwenhoek 66:57–88

    CAS  Google Scholar 

  28. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) Microbiology 143:3633–3647

    CAS  PubMed  Google Scholar 

  29. Trchounian AA, Bagramyan KA, Vassilian AV, Poladian AA (1999) Biol Membr 16:416–428

    CAS  Google Scholar 

  30. Berg BL, Li J, Heider J, Stewart V (1991) J Biol Chem 266:22380–22385

    CAS  PubMed  Google Scholar 

  31. Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA (2001) Cell Mol Life Sci 58:179–189

    CAS  PubMed  Google Scholar 

  32. Jormakka M, Tornroth S, Byrne B, Iwata S (2002) Science 295:1863–1868

    PubMed  Google Scholar 

  33. Jormakka M, Byrne B, Iwata S (2003) Curr Opin Struct Biol 13:418–423

    CAS  PubMed  Google Scholar 

  34. Jones RW, Lamont A, Garland PB (1980) Biochem J 190:79–89

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Jormakka M, Byrne B, Iwata S (2003) FEBS Lett 545:25–30

    CAS  PubMed  Google Scholar 

  36. Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S (2008) Nat Struct Mol Biol 15:730–745

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Sawers G, Heider J, Zehelein E, Bock A (1991) J Bacteriol 173:4983–4993

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Pommier J, Mandrand MA, Holt SE, Boxer DH, Giodano G (1992) Biochim Biophys Acta 1107:305–313

    CAS  PubMed  Google Scholar 

  39. Abaibou H, Pommier J, Benoit S, Giordano G, Mandrandberthelot MA (1995) J Bacteriol 177:7141–7149

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Benoit S, Abaibou H, Mandrand-Berthelot MA (1998) J Bacteriol 180:6625–6637

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Kroger A, Dorrer E, Winkler E (1980) Biochim Biophys Acta 589:118–138

    CAS  PubMed  Google Scholar 

  42. Bokranz M, Gutmann M, Kortner C, Kojro E, Fahrenholz F, Lauterbach F, Kroger A (1991) Arch Microbiol 156:119–128

    CAS  PubMed  Google Scholar 

  43. Sebban C, Blanchard L, Bruschi M, Guerlesquin F (1995) FEMS Microbiol Lett 133:143–149

    CAS  PubMed  Google Scholar 

  44. Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) J Biol Inorg Chem 2:198–208

    CAS  Google Scholar 

  45. Lenger R, Herrmann U, Gross R, Simon J, Kroger A (1997) Eur J Biochem 246:646–651

    CAS  PubMed  Google Scholar 

  46. Simon J (2002) FEMS Microbiol Rev 26:285–309

    CAS  PubMed  Google Scholar 

  47. Simon J, Klotz MG (2013) Biochim Biophys Acta 1827:114–135

    CAS  PubMed  Google Scholar 

  48. Yagi T (1979) Biochim Biophys Acta 548:96–105

    CAS  PubMed  Google Scholar 

  49. Sebban-Kreuzer C, Blackledge M, Dolla A, Marion D, Guerlesquin F (1998) Biochemistry 37:8331–8340

    CAS  PubMed  Google Scholar 

  50. Sebban-Kreuzer C, Dolla A, Guerlesquin F (1998) Eur J Biochem 253:645–656

    CAS  PubMed  Google Scholar 

  51. Morelli X, Guerlesquin F (1999) FEBS Lett 460:77–80

    CAS  PubMed  Google Scholar 

  52. Matias PM, Pereira IA, Soares CM, Carrondo MA (2005) Prog Biophys Mol Biol 89:292–312

    CAS  PubMed  Google Scholar 

  53. Silva SM, Voordouw J, Leitão C, Martins M, Voordouw G, Pereira IA (2013) Microbiology 159:1760–1769

    PubMed  Google Scholar 

  54. Pereira IA, Ramos AR, Grein F, Marques MC, Silva SM, Venceslau SS (2011) Front Microbiol 2:69–91

  55. Silva SM, Pacheco I, Pereira IA (2012) J Biol Inorg Chem 17:831–838

    PubMed  Google Scholar 

  56. Steenkamp DJ, Peck HD Jr (1981) J Biol Chem 256:5450–5458

    CAS  PubMed  Google Scholar 

  57. Barton LL, LeGall J, Odom JM, Peck HD Jr (1983) J Bacteriol 153:867–871

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Marietou A, Richardson D, Cole J, Mohan S (2005) FEMS Microbiol Lett 248:217–225

    CAS  PubMed  Google Scholar 

  59. Vorholt JA (2002) Arch Microbiol 178:239–249

    CAS  PubMed  Google Scholar 

  60. Pomper BK, Saurel O, Milon A, Vorholt JA (2002) FEBS Lett 523:133–137

    CAS  PubMed  Google Scholar 

  61. Friedrich CG, Bowien B, Friedrich B (1979) J Gen Microbiol 115:185–192

    CAS  Google Scholar 

  62. Bowien B, Schlegel HG (1981) Annu Rev Microbiol 35:405–452

    CAS  PubMed  Google Scholar 

  63. Friedebold J, Bowien B (1993) J Bacteriol 175:4719–4728

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Thauer RK (1998) Microbiology 144:2377–2406

    CAS  PubMed  Google Scholar 

  65. Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600

    CAS  PubMed  Google Scholar 

  66. Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA (2010) Proc Natl Acad Sci USA 107:11050–11055

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA (2013) J Bacteriol 195:1456–1462

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Ljungdahl LG, Wood HG (1969) Annu Rev Microbiol 23:515–538

    CAS  PubMed  Google Scholar 

  69. Thauer RK (1972) FEBS Lett 27:111–115

    CAS  PubMed  Google Scholar 

  70. Scherer PA, Thauer RK (1978) Eur J Biochem 85:125–135

    CAS  PubMed  Google Scholar 

  71. Ragsdale SW (1997) BioFactors 6:3–11

    CAS  PubMed  Google Scholar 

  72. Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Int J Syst Evol Microbiol 55:2085–2091

    CAS  PubMed  Google Scholar 

  73. Ragsdale SW, Pierce E (2008) Biochim Biophys Acta 1784:1873–1898

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Bruant G, Levesque M-J, Peter C, Guiot SR, Masson L (2010) PLoS One 5:e13033. doi:10.1371/journal.pone.0013033

    PubMed Central  PubMed  Google Scholar 

  75. Paul D, Austin FW, Arick T, Bridges SM, Burgess SC, Dandass YS, Lawrence ML (2010) J Bacteriol 192:5554–5555

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Schuchmann K, Müller V (2013) Science 342:1382–1385

    CAS  PubMed  Google Scholar 

  77. Pereira I (2013) Science 342:1329–1330

    CAS  PubMed  Google Scholar 

  78. Stams AJM (1994) A v Leeuwenhoek 66:271–294

    CAS  Google Scholar 

  79. Schink B (1997) Microbiol Mol Biol Rev 61:262–280

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Thiele JH, Zeikus JG (1988) Appl Environ Microbiol 54:20–29

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F (1988) Arch Microbiol 150:254–266

    CAS  Google Scholar 

  82. Boone DR, Johnson RL, Liu Y (1989) Appl Environ Microbiol 55:1735–1741

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Dong XZ, Plugge CM, Stams AJM (1994) Appl Environ Microbiol 60:2834–2838

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Stams AJM, Dong XZ (1995) A v Leeuwenhoek 68:281–284

    CAS  Google Scholar 

  85. McInerney MJ, Sieber JR, Gunsalus RP (2009) Curr Opin Biotechnol 20:623–632

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Stams AJ, Plugge CM (2009) Nat Rev Microbiol 7:568–577

    CAS  PubMed  Google Scholar 

  87. Bok FAM, Luijten MLGC, Stams AJM (2002) Appl Environ Microbiol 68:4247–4252

    PubMed Central  PubMed  Google Scholar 

  88. Bok FA, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJ (2003) Eur J Biochem 270:2476–2485

    PubMed  Google Scholar 

  89. Lovley DR, Holmes DE, Nevin KP (2004) Adv Microb Physiol 49:219–286

    CAS  PubMed  Google Scholar 

  90. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Mol Microbiol 65:12–20

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Appl Environ Microbiol 67:5568–5580

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Kato N (1990) Meth Enzymol 188:459–462

    CAS  PubMed  Google Scholar 

  93. Vinals C, Depiereux E, Feytmans E (1993) Biochem Biophys Res Commun 192:182–188

    CAS  PubMed  Google Scholar 

  94. Popov VO, Lamzin VS (1994) Biochem J 301:625–643

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Lamzin VS, Dauter Z, Popov VO, Harutyunyan EH, Wilson KS (1974) J Mol Biol 236:759–785

    Google Scholar 

  96. Blanchard JS, Cleland WW (1980) Biochemistry 19:3543–3547

    CAS  PubMed  Google Scholar 

  97. Rotberg NS, Cleland WW (1991) Biochemistry 30:4068–4076

    CAS  PubMed  Google Scholar 

  98. Mesentsev AV, Ustinnikova TB, Tikhonova TV, Popov VO (1996) Appl Biochem Microbiol 32:529–537

    Google Scholar 

  99. Tishkov VI, Matorin AD, Rojkova AM, Fedorchuk VV, Savitsky PA, Dementieva LA, Lamzin VS, Mezentzev AV, Popov VO (1996) FEBS Lett 390:104–108

    CAS  PubMed  Google Scholar 

  100. Filippova EV, Polyakov KM, Tikhonova TV, Stekhanova TN, Boiko KM, Popov VO (2005) Crystallogr Rep 50:796–801

    CAS  Google Scholar 

  101. Castillo R, Oliva M, Marti S, Moliner V (2008) J Phys Chem B 112:10012–10022

    CAS  PubMed  Google Scholar 

  102. Shabalin IG, Polyakov KM, Tishkov VI, Popov VO (2009) Acta Nat 1:89–93

    CAS  Google Scholar 

  103. Hille R (1996) Chem Rev 96:2757–2816

    CAS  PubMed  Google Scholar 

  104. Hille R (2002) Trends Biochem Sci 27:360–367

    CAS  PubMed  Google Scholar 

  105. Schwarz G, Mendel R, Ribbe M (2009) Nature 460:839–847

    CAS  PubMed  Google Scholar 

  106. Hille R, Mendel R (2011) Coord Chem Rev 255:991–992

    CAS  Google Scholar 

  107. Mendel R, Kruse T (2012) Biochim Biophys Acta 1823:1568–1579

    CAS  PubMed  Google Scholar 

  108. Hille R (2013) Dalton Trans 42:3029–3042

    CAS  PubMed  Google Scholar 

  109. Anbar AD (2008) Science 322:1481–1483

    CAS  PubMed  Google Scholar 

  110. Johnson MK, Rees DC, Adams MW (1996) Chem Rev 96:2817–2840

    CAS  PubMed  Google Scholar 

  111. Kletzin A, Adams MW (1996) FEMS Microbiol Rev 18:5–63

    CAS  PubMed  Google Scholar 

  112. Andreesen JR, Makdessi M (2008) Ann NY Acad Sci 1125:215–229

    CAS  PubMed  Google Scholar 

  113. Bevers LE, Hagedoorn PL, Hagen WR (2009) Coord Chem Rev 253:269–290

    CAS  Google Scholar 

  114. George GN, Pickering IJ, Yu EY, Prince RC, Bursakov SA, Gavel OY, Moura I, Moura JJG (2000) J Am Chem Soc 122:8321–8323

    CAS  Google Scholar 

  115. Bursakov SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJ, Moura I (2004) J Inorg Biochem 98:833–840

    CAS  PubMed  Google Scholar 

  116. Rivas MG, Carepo MS, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJG, Moura I (2009) Biochemistry 48:873–882

    CAS  PubMed  Google Scholar 

  117. Carepo MS, Pauleta SR, Wedd AG, Moura JJG, Moura I (2014) J Biol Inorg Chem 19:605–614

    CAS  PubMed  Google Scholar 

  118. Rothery RA, Workun GJ, Weiner JH (2008) Biochim Biophys Acta 1778:1897–1929

    CAS  PubMed  Google Scholar 

  119. Roy R, Adams MW (2002) Met Ions Biol Syst 39:673–697

    CAS  PubMed  Google Scholar 

  120. Hille R, Nishino T (1995) FASEB J 9:995–1003

    CAS  PubMed  Google Scholar 

  121. Hille R (2005) Arch Biochem Biophys 433:107–116

    CAS  PubMed  Google Scholar 

  122. Hille R (2006) Eur J Inorg Chem 1913–1926

  123. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) FEBS J 275:3278–3289

    CAS  PubMed  Google Scholar 

  124. Hille R, Nishino T, Bittner F (2011) Coord Chem Rev 255:1179–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Okamoto K, Kusano T, Nishino T (2013) Curr Pharm Des 19:2606–2614

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Schink B (1985) Arch Microbiol 142:295–301

    CAS  Google Scholar 

  127. Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PM (2004) Proc Natl Acad Sci USA 101:11571–11576

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Proc Natl Acad Sci USA 83:4650–4654

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Axley MJ, Grahame DA, Stadtman TC (1990) J Biol Chem 265:18213–18218

    CAS  PubMed  Google Scholar 

  130. Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC, Sun PD (1996) J Biol Chem 271:8095–8100

    CAS  PubMed  Google Scholar 

  131. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305–1308

    CAS  PubMed  Google Scholar 

  132. Raaijmakers HCA, Romao MJ (2006) J Biol Inorg Chem 11:849–854

    CAS  PubMed  Google Scholar 

  133. Thome R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, Walburger A (2012) J Biol Chem 287:4671–4678

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Jormakka M, Tornroth S, Abramson J, Byrne B, Iwata S (2002) Acta Crystallogr D Biol Crystallogr 58:160–162

    PubMed  Google Scholar 

  135. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner J, Strynadka NC (2003) Nat Struct Biol 10:681–687

    CAS  PubMed  Google Scholar 

  136. Jormakka M, Richardson D, Byrne B, Iwata S (2004) Structure 12:95–104

    CAS  PubMed  Google Scholar 

  137. Gonzaalez PG, Correia C, Moura I, Brondino CD, Moura JJG (2006) J Inorg Biochem 100:1015–1023

    Google Scholar 

  138. Berks BC (1996) Mol Microbiol 22:393–404

    CAS  PubMed  Google Scholar 

  139. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T (1998) EMBO J 17:3640–3650

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Sargent F, Stanley NR, Berks BC, Palmer T (1999) J Biol Chem 274:36073–36083

    CAS  PubMed  Google Scholar 

  141. Abaibou H, Pommier J, Benoit JP, Giordano G, Mandrand M (1995) J Bacteriol 177:141–7149

    Google Scholar 

  142. Plunkett G, Burland V, Daniels DL, Blattner FR (1993) Nucleic Acids Res 21:3391–3398

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJ, Moura I (1999) Biochemistry 38:16366–16372

    CAS  PubMed  Google Scholar 

  144. Raaijmakers H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJ, Romao MJ (2001) J Biol Inorg Chem 6:398–404

    CAS  PubMed  Google Scholar 

  145. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romao MJ (2002) Structure 10:1261–1272

    CAS  PubMed  Google Scholar 

  146. Rivas M, Gonzalez P, Brondino CD, Moura JJG, Moura I (2007) J Inorg Biol 101:1617–1622

    CAS  Google Scholar 

  147. Mota CS, Valette O, Gonzalez PJ, Brondino CD, Moura JJG, Moura I, Dolla A, Rivas MG (2011) J Bacteriol 193:2917–2923

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Brondino CD, Passeggi MCG, Caldeira J, Almendra MJ, Feio MJ, Moura JJG, Moura I (2004) J Biol Inorg Chem 9:145–151

    CAS  PubMed  Google Scholar 

  149. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) Nat Biotechnol 22:554–559

    CAS  PubMed  Google Scholar 

  150. Bursakov S, Liu M-Y, Payne WJ, LeGall J, Moura I, Moura JJG (1995) Anaerobe 1:55–60

    CAS  PubMed  Google Scholar 

  151. Silva SM, Pimentel C, Valente FMA, Rodrigues-Pousada C, Pereira IAC (2011) J Bacteriol 193:2909–2917

    PubMed Central  PubMed  Google Scholar 

  152. ElAntak L, Dolla A, Durand MC, Bianco P, Guerlesquin F (2005) Biochemistry 44:14828–14834

    CAS  PubMed  Google Scholar 

  153. Friedebold J, Mayer F, Bill E, Trautwein AX, Bowien B (1995) Biol Chem Hoppe Seyler 376:561–568

    CAS  PubMed  Google Scholar 

  154. Oh JI, Bowien B (1998) J Biol Chem 273:26349–26360

    CAS  PubMed  Google Scholar 

  155. Oh JI, Bowien B (1999) Mol Microbiol 34:365–376

    CAS  PubMed  Google Scholar 

  156. Jollie DR, Lipscomb JD (1991) J Biol Chem 266:21853–21863

    CAS  PubMed  Google Scholar 

  157. Sazanov LA, Hinchliffe P (2006) Science 311:1430–1434

    CAS  PubMed  Google Scholar 

  158. Karzanov VV, Bogatsky YuA, Tishkov VI, Egorov AM (1989) FEMS Mivrobiol Lett 60:197–200

  159. Karzanov VV, Correa CM, Bogatsky YG, Netrisuoc AI (1991) FEMS Microbiol Lett 81:95–100

    CAS  Google Scholar 

  160. Girio FM, Amaral-Collaco MT, Attwood M (1994) Appl Microbiol Biotechnol 40:898–903

    CAS  Google Scholar 

  161. Duarte RO, Reis AR, Girio F, Moura I, Moura JJG, Collaco TA (1997) Biochem Biophys Res Com 230:30–34

    CAS  PubMed  Google Scholar 

  162. Muller U, Willnow P, Ruschig U, Hopner T (1978) Eur J Biochem 83:485–498

    CAS  PubMed  Google Scholar 

  163. Chistoserdova L, Laukel M, Portais J-C, Vorholt JA, Lidstrom ME (2004) J Bacteriol 186:22–28

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Laukel M, Chistoserdova L, Lidstrom ME, Vorholt JA (2003) Eur J Biochem 270:325–333

    CAS  PubMed  Google Scholar 

  165. Hartmann T, Leimkuhler S (2013) FEBS J 280:6083–6096

    CAS  PubMed  Google Scholar 

  166. Yamamoto I, Saikit T, Liu S-M, Ljungdahlg L (1983) J Biol Chem 258:1826–1832

    CAS  PubMed  Google Scholar 

  167. Deaton JC, Solomon EI, Watt GD, Wetherbee PJ, Durfor CN (1987) Biochem Biophys Res Commun 149:424–430

    CAS  PubMed  Google Scholar 

  168. Ljungdahl LG, Andreesen JR (1975) FEBS Lett 54:279–282

    CAS  PubMed  Google Scholar 

  169. Leonhardt U, Andreesen JR (1977) Arch Microbiol 115:277–284

    CAS  PubMed  Google Scholar 

  170. Alissandratos A, Kim HK, Matthews H, Hennessy JE, Philbrook A, Easton CJ (2013) Appl Environ Microbiol 79:741–744

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038

    CAS  PubMed  Google Scholar 

  172. Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME (2007) J Bacteriol 189:9076–9081

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Andreesen JR, Ljungdahl LG (1973) J Bacteriol 116:867–873

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Andreesen JR, Ljungdahl LG (1975) J Bacteriol 120:6–14

    Google Scholar 

  175. Schauer NI, Ferry JF (1982) J Bacteriol 150:1–7

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Barber MJ, Siege LM, Schauer NL, May HD, Ferry JG (1983) J Biol Chem 258:10839–10845

    CAS  PubMed  Google Scholar 

  177. Schauert NI, Ferry JG (1986) J Bacteriol 165:405–411

    Google Scholar 

  178. Shuber AP, Orr EC, Recny MA, Schendel P, May HD, Schauer NL, Ferry JG (1986) J Biol Chem 261:12942–12947

    CAS  PubMed  Google Scholar 

  179. Johnson JL, Bastian NR, Schauer NL, Ferry JG, Rajagopalan KV (1991) FEMS Microbiol Lett 77:213–216

    CAS  Google Scholar 

  180. Noolling K, Reeve JN (1997) J Bacteriol 179:899–908

    Google Scholar 

  181. Jones JB, Stadtmang TC (1980) J Biol Chem 255:1049–1053

    CAS  PubMed  Google Scholar 

  182. Jones JB, Stadtmant TC (1981) J Biol Chem 256:656–663

    CAS  PubMed  Google Scholar 

  183. George GN, Colangelo CM, Dong J, Scott RA, Khangulov SV, Gladyshev VN, Stadtman TC (1998) J Am Chem Soc 120:1267–1273

    CAS  Google Scholar 

  184. George GN, Costa C, Moura JJG, Moura I (1999) J Am Chem Soc 121:2625–2631

    CAS  Google Scholar 

  185. Gladyshev VN, Khangulov SK, Axley MJ, Stadtman TC (1994) Proc Natl Acad Sci USA 91:7708–7711

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998) Biochemistry 37:3518–3528

    CAS  PubMed  Google Scholar 

  187. Thauer RK, Kaufer B, Fuchs G (1975) Eur J Biochem 55:111–117

    CAS  PubMed  Google Scholar 

  188. Leopoldini M, Chiodo SG, Toscano M, Russo N (2008) Chemistry 14:8674–8681

    CAS  PubMed  Google Scholar 

  189. Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJ, González PJ, Cerqueira NM (2011) J Biol Inorg Chem 16:1255–1268

    CAS  PubMed  Google Scholar 

  190. Cerqueira NMFSA, Fernandes PA, Gonzalez PJ, Moura JJG, Ramos MJ (2013) Inorg Chem 52:10766–10772

    CAS  PubMed  Google Scholar 

  191. Axley MJ, Bock A, Stadtman TC (1991) Proc Natl Acad Sci USA 88:8450–8454

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Moura JJG, Brondino CD, Trincão J, Romão MJ (2004) J Biol Inorg Chem 9:791–799

    CAS  PubMed  Google Scholar 

  193. Demsar A, Kosmrlj J, Petricek S (2002) J Am Chem Soc 124:3951–3958

    CAS  PubMed  Google Scholar 

  194. Sousa SF, Fernandes PA, Ramos MJ (2007) J Am Chem Soc 129:1378–1383

    CAS  PubMed  Google Scholar 

  195. Tiberti M, Papaleo E, Russo N, Gioia L, Zampella G (2012) Inorg Chem 51:8331–8339

    CAS  PubMed  Google Scholar 

  196. Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G (1999) Mol Microbiol 32:159–168

    CAS  PubMed  Google Scholar 

  197. Sevcenco AM, Bevers LE, Pinkse MWH, Krijger GC, Wolterbeek HT, Verhaert PDEM, Hagen WR, Hagedoorn PL (2010) J Bacteriol 192:4143–4152

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Proc Natl Acad Sci USA 105:10654–10658

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Callis GE, Wentworth RA (1977) Bioinorg Chem 7:57–70

    CAS  PubMed  Google Scholar 

  200. Ruschig U, Muller U, Willnow P, Hopner T (1976) Eur J Biochem 70:325–330

    CAS  PubMed  Google Scholar 

  201. Tcherkez GGB, Farquhar GD, JohnAndrews TJ (2006) Proc Natl Acad Sci USA 103:7246–7521

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Parkinson BA, Weaver PF (1984) Nature 309:148–149

    CAS  Google Scholar 

  203. Miyatani R, Amao Y (2002) Biotechnol Lett 24:1931–1934

    CAS  Google Scholar 

  204. Lu Y, Jiang ZY, Xu SW, Wu H (2006) Catal Today 115:263–268

    CAS  Google Scholar 

  205. Minteer SD, Liaw BY, Cooney MJ (2007) Curr Opin Biotecnol 18:1–7

    Google Scholar 

  206. Joó F (2008) ChemSusChem 1:805–808

    PubMed  Google Scholar 

  207. Crable BR, Plugge CM, McInerney MJ, Stams AJM (2011) Enzyme Res 532536. doi:10.4061/2011/532536

  208. Yadav RK, Baeg J-O, Oh GH, Park N-J, Kong K-J, Kim J, Hwang DW, Biswas SK (2012) J Am Chem Soc 134:11455–11461

    CAS  PubMed  Google Scholar 

  209. Yoshimoto M, Kunihiro N, Tsubomura N, Nakayama M (2013) Colloids Surf B Biointerfaces 109:40–44

    CAS  PubMed  Google Scholar 

  210. Slusarczyk H, Felber S, Kula MR, Pohl M (2000) Eur J Biochem 267:1280–1289

    CAS  PubMed  Google Scholar 

  211. Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N (2005) Appl Microbiol Biotechnol 67:33–39

    CAS  PubMed  Google Scholar 

  212. Tishkov VI, Popov VO (2006) Biomol Eng 23:89–110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants and Project PEst-C/EQB/LA0006/2013 from Fundação para a Ciência e Tecnologia (FCT)/MEC, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Moura.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L.B., Moura, J.J.G. & Moura, I. Molybdenum and tungsten-dependent formate dehydrogenases. J Biol Inorg Chem 20, 287–309 (2015). https://doi.org/10.1007/s00775-014-1218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1218-2

Keywords

Navigation