Advertisement

Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds

  • Anikó Németh
  • Mihály Dernovics
Original Paper

Abstract

A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg−1) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25 % coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine–methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants.

Keywords

Selenium Hyperaccumulator Multiple S/Se substitution 

Notes

Acknowledgments

This study was supported by the TÁMOP 4.2.1./B-09/1/KMR-2010-0005 and the KTIA_AIK_12-1-2012-0024 Grants.

Supplementary material

775_2014_1206_MOESM1_ESM.ppt (3.3 mb)
Supplementary material 1 (PPT 3363 kb)

References

  1. 1.
    McConnell KP (1963) Metabolism of selenium in the mammalian organism. J Agric Food Chem 11:385–388. doi: 10.1021/jf60129a011 CrossRefGoogle Scholar
  2. 2.
    Schroeder HA, Frost DV, Balassa JJ (1970) Essential trace metals in man: Selenium. J Chronic Dis 23:227–243. doi: 10.1016/0021-9681(70)90003-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Stadtman TC (1974) Selenium biochemistry. Science 183:915–922. doi: 10.2307/1737886 PubMedCrossRefGoogle Scholar
  4. 4.
    Hamilton EE, Wilker JJ (2004) Inhibition of DNA alkylation damage with inorganic salts. J Biol Inorg Chem 9:894–902. doi: 10.1007/s00775-004-0597-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432CrossRefGoogle Scholar
  6. 6.
    Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12. doi: 10.1007/s00775-005-0056-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Freeman JL, Zhang LH, Marcus MA et al (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134. doi: 10.1104/pp.106.081158 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Quinn CF, Prins CN, Freeman JL et al (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737. doi: 10.1111/j.1469-8137.2011.03832.x PubMedCrossRefGoogle Scholar
  9. 9.
    Vonderheide AP, Wrobel K, Kannamkumarath SS et al (2002) Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. J Agric Food Chem 50:5722–5728. doi: 10.1021/jf0256541 PubMedCrossRefGoogle Scholar
  10. 10.
    Dernovics M, García-Barrera T, Bierla K et al (2007) Standardless identification of selenocystathionine and its γ-glutamyl derivatives in monkeypot nuts by 3D liquid chromatography with ICP-MS detection followed by nanoHPLC-Q-TOF–MS/MS. Analyst 132:439–449. doi: 10.1039/b618637h PubMedCrossRefGoogle Scholar
  11. 11.
    Ferri T, Coccioli F, De Luca C et al (2004) Distribution and speciation of selenium in Lecythis ollaria plant. Microchem J 78:195–203. doi: 10.1016/j.microc.2004.06.001 CrossRefGoogle Scholar
  12. 12.
    Jayasinghe SB, Caruso JA (2011) Investigation of Se-containing proteins in Bertholletia excelsa H.B.K. (Brazil nuts) by ICPMS, MALDI-MS and LC-ESI-MS methods. Int J Mass Spectrom 307:16–27. doi: 10.1016/j.ijms.2010.12.005 CrossRefGoogle Scholar
  13. 13.
    Moreno FJ, Jenkins JA, Mellon FA et al (2004) Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochim Biophys Acta Proteins Proteomics 1698:175–186. doi: 10.1016/j.bbapap.2003.11.007 CrossRefGoogle Scholar
  14. 14.
    Zuo W-N, Sun SSM (1996) Purification and characterization of the methionine-rich 2S seed proteins from the Brazil nut family (Lecythidaceae). J Agric Food Chem 44:1206–1210CrossRefGoogle Scholar
  15. 15.
    Antunes AJ, Markakis P (1977) Protein supplementation of navy beans with Brazil nuts. J Agric Food Chem 25:1096–1098PubMedCrossRefGoogle Scholar
  16. 16.
    Sun SS, Altenbach SB, Leung FW (1987) Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut (Bertholletia excelsa H.B.K.). Eur J Biochem 162:477–483PubMedCrossRefGoogle Scholar
  17. 17.
    Bianga J, Govasmark E, Szpunar J (2013) Characterization of selenium incorporation into wheat proteins by two-dimensional gel electrophoresis-laser ablation ICP MS followed by capillary HPLC-ICP MS and electrospray linear trap quadrupole orbitrap MS. Anal Chem 85:2037–2043PubMedCrossRefGoogle Scholar
  18. 18.
    Fang Y, Catron B, Zhang Y et al (2010) Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J Agric Food Chem 58:9731–9738. doi: 10.1021/jf100934p PubMedCrossRefGoogle Scholar
  19. 19.
    Wolf WR, Zainal H, Yager B (2001) Selenomethionine content of candidate reference materials. Anal Bioanal Chem 370:286–290CrossRefGoogle Scholar
  20. 20.
    Böck A, Forchhammer K, Heider J, Baron C (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467PubMedCrossRefGoogle Scholar
  21. 21.
    Encinar JR, Ouerdane L, Buchmann W et al (2003) Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal Chem 75:3765–3774. doi: 10.1021/ac034103m PubMedCrossRefGoogle Scholar
  22. 22.
    Böck A, Flohé L, Köhrle J (2007) Selenoproteins—biochemistry and clinical relevance. Biol Chem 388:985–986. doi: 10.1515/BC.2007.148 PubMedCrossRefGoogle Scholar
  23. 23.
    Kitajima T, Jigami Y, Chiba Y (2012) Cytotoxic mechanism of selenomethionine in yeast. J Biol Chem 287:10032–10038. doi: 10.1074/jbc.M111.324244 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta Gen Subj 1790:1424–1428. doi: 10.1016/j.bbagen.2009.05.014 CrossRefGoogle Scholar
  25. 25.
    Eustice DC, Kull FJ, Shrift A (1981) Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiol 67:1054–1058. doi: 10.1104/pp.67.5.1054 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Müller S, Senn H, Gsell B et al (1994) The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry (Mosc) 33:3404–3412CrossRefGoogle Scholar
  27. 27.
    Hallenbeck PC, George GN, Prince RC, Thorneley RNF (2009) Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. J Biol Inorg Chem 14:673–682. doi: 10.1007/s00775-009-0480-1 PubMedCrossRefGoogle Scholar
  28. 28.
    Cheajesadagul P, Bianga J, Arnaudguilhem C et al (2014) Large-scale speciation of selenium in rice proteins using ICP-MS assisted electrospray MS/MS proteomics. Metallomics 6:646–653. doi: 10.1039/c3mt00299c PubMedCrossRefGoogle Scholar
  29. 29.
    Chan Q, Afton SE, Caruso JA (2010) Investigation of selenium metabolites in Se-enriched kale, Brassica oleracea A, via HPLC-ICPMS and nanoESI-ITMS. J Anal At Spectrom 25:186–192. doi: 10.1039/B914157J CrossRefGoogle Scholar
  30. 30.
    Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants-2. The utilization of various selenium compounds. Plant Soil 32:382–396. doi: 10.1007/BF01372878 CrossRefGoogle Scholar
  31. 31.
    Kannamkumarath SS, Wrobel K, Wrobel K et al (2002) HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut. Anal Bioanal Chem 373:454–460. doi: 10.1007/s00216-002-1354-3 PubMedCrossRefGoogle Scholar
  32. 32.
    Bodó ET, Stefánka Z, Ipolyi I et al (2003) Preparation, homogeneity and stability studies of a candidate LRM for Se speciation. Anal Bioanal Chem 377:32–38. doi: 10.1007/s00216-003-1941-y PubMedCrossRefGoogle Scholar
  33. 33.
    Németh A, García Reyes JF, Kosáry J, Dernovics M (2013) The relationship of selenium tolerance and speciation in Lecythidaceae species. Metallomics 5:1663–1673. doi: 10.1039/c3mt00140g PubMedCrossRefGoogle Scholar
  34. 34.
    Ogra Y, Anan Y (2009) Selenometabolomics: identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. J Anal At Spectrom 24:1477–1488. doi: 10.1039/b910235c CrossRefGoogle Scholar
  35. 35.
    Visioli G, Marmiroli N (2013) The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 79:133–145. doi: 10.1016/j.jprot.2012.12.006 PubMedCrossRefGoogle Scholar
  36. 36.
    Dernovics M, Giusti P, Lobinski R (2007) ICP-MS-assisted nanoHPLC-electrospray Q/time-of-flight MS/MS selenopeptide mapping in Brazil nuts. J Anal At Spectrom 22:41–50. doi: 10.1039/b608041c CrossRefGoogle Scholar
  37. 37.
    Kinter M, Sherman NE (2005) Protein sequencing and identification using tandem mass spectrometry. Wiley, USAGoogle Scholar
  38. 38.
    Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999. doi: 10.1002/pmic.201000595 PubMedCrossRefGoogle Scholar
  39. 39.
    Barsnes H, Vaudel M, Colaert N et al (2011) Compomics-utilities: an open-source Java library for computational proteomics. BMC Bioinformatics. doi: 10.1186/1471-2105-12-70 PubMedCentralPubMedGoogle Scholar
  40. 40.
    McSheehy S, Kelly J, Tessier L, Mester Z (2005) Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography–mass spectrometry based proteomic analysis. Analyst 130:35–37. doi: 10.1039/b414246b PubMedCrossRefGoogle Scholar
  41. 41.
    Bierla K, Bianga J, Ouerdane L et al (2013) A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J Proteomics 87:26–39. doi: 10.1016/j.jprot.2013.05.010 PubMedCrossRefGoogle Scholar
  42. 42.
    Bianga J, Szpunar J (2013) ICP-MS-assisted identification of selenium-containing proteins in 2D gels using a new capillary HPLC-ICP MS interface and Orbitrap tandem mass spectrometry. J Anal At Spectrom 28:288–292. doi: 10.1039/c2ja30273j CrossRefGoogle Scholar
  43. 43.
    Dernovics M, Vass A, Németh A, Magyar A (2012) Synthesis and application of a Sec2-containing oligopeptide for method evaluation purposes in selenium speciation. Talanta 99:186–193. doi: 10.1016/j.talanta.2012.05.038 PubMedCrossRefGoogle Scholar
  44. 44.
    Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400. doi: 10.1016/j.jprot.2010.12.004 PubMedCrossRefGoogle Scholar
  45. 45.
    Giusti P, Schaumlöffel D, Encinar JR, Szpunar J (2005) Interfacing reversed-phase nanoHPLC with ICP-MS and on-line isotope dilution analysis for the accurate quantification of selenium-containing peptides in protein tryptic digests. J Anal At Spectrom 20:1101–1107. doi: 10.1039/B506620D CrossRefGoogle Scholar
  46. 46.
    Burnell JN, Shrift A (1979) Cysteinyl-tRNA synthetase from Astragalus species. Plant Physiol 63:1095–1097. doi: 10.1104/pp.63.6.1095 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053. doi: 10.1104/pp.67.5.1051 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261. doi: 10.1016/0968-0004(92)90405-X PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2014

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of Food ScienceCorvinus University of BudapestBudapestHungary

Personalised recommendations