Skip to main content
Log in

Isotropic exchange interaction between Mo and the proximal FeS center in the xanthine oxidase family member aldehyde oxidoreductase from Desulfovibrio gigas on native and polyalcohol inhibited samples: an EPR and QM/MM study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a homodimeric molybdenum-containing protein that catalyzes the hydroxylation of aldehydes to carboxylic acids and contains a Mo-pyranopterin active site and two FeS centers called FeS 1 and FeS 2. The electron transfer reaction inside DgAOR is proposed to be performed through a chemical pathway linking Mo and the two FeS clusters involving the pyranopterin ligand. EPR studies performed on reduced as-prepared DgAOR showed that this pathway is able to transmit very weak exchange interactions between Mo(V) and reduced FeS 1. Similar EPR studies but performed on DgAOR samples inhibited with glycerol and ethylene glycol showed that the value of the exchange coupling constant J increases ~2 times upon alcohol inhibition. Structural studies in these DgAOR samples have demonstrated that the Mo–FeS 1 bridging pathway does not show significant differences, confirming that the changes in J observed upon inhibition cannot be ascribed to structural changes associated neither with pyranopterin and FeS 1 nor with changes in the electronic structure of FeS 1, as its EPR properties remain unchanged. Theoretical calculations indicate that the changes in J detected by EPR are related to changes in the electronic structure of Mo(V) determined by the replacement of the OHx labile ligand for an alcohol molecule. Since the relationship between electron transfer rate and isotropic exchange interaction, the present results suggest that the intraenzyme electron transfer process mediated by the pyranopterin moiety is governed by a Mo ligand-based regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DgAOR:

Aldehyde oxidoreductase from Desulfovibrio gigas

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    Article  CAS  PubMed  Google Scholar 

  2. Boeer AB, Barra AL, Chibotaru LF, Collison D, McInnes EJL, Mole RA, Simeoni GG, Timco GA, Ungur L, Unruh T, Winpenny REP (2011) Angew Chem Int Ed 50:4007–4011

    Article  CAS  Google Scholar 

  3. Kirk ML, Shultz DA, Habel-Rodriguez D, Schmidt RD, Sullivan U (2010) J Phys Chem B 114:14712–14716

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Villamena FA, Rockenbauer A, Song Y, Zweier JL (2013) J Am Chem Soc 135:2350–2356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hasjim PL, Ponomarenko N, Weber S, Norris JR (2010) J Phys Chem B 114:14194–14199

    Article  CAS  PubMed  Google Scholar 

  6. Butler WF, Calvo R, Fredkin DR, Isaacson RA, Okamura MY, Feher G (1984) Biophys J 45:947–973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zatsman AI, Zhang H, Gunderson WA, Cramer WA, Hendrich MP (2006) J Am Chem Soc 128:14246–14247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cheesman MR, Oganesyan VS, Watmough NJ, Butler CS, Thomson AJ (2004) J Am Chem Soc 126:4157–4166

    Article  CAS  PubMed  Google Scholar 

  9. Bennett B, Antholine WE, D’Souza VM, Chen G, Ustinyuk L, Holz RC (2002) J Am Chem Soc 124:13025–13034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. More C, Camensuli P, Dole F, Guigliarelli B, Asso M, Fournel A, Bertrand P (1996) J Biol Inorg Chem 1:152–161

    Article  CAS  Google Scholar 

  11. Kahn O (1993) Molecular magnetism. VCH Publishers, New York

    Google Scholar 

  12. Murrie M (2010) Chem Soc Rev 39:1986–1995

    Article  CAS  PubMed  Google Scholar 

  13. Mroziński J (2005) Coord Chem Rev 249:2534–2548

    Article  Google Scholar 

  14. Benelli C, Gatteschi D (2002) Chem Rev 102:2369–2388

    Article  CAS  PubMed  Google Scholar 

  15. Calvo R, Isaacson RA, Paddock ML, Abresch EC, Okamura MY, Maniero AL, Brunel LC, Feher G (2001) J Phys Chem B 105:4053–4057

    Article  CAS  Google Scholar 

  16. Dole F, Medina M, More C, Cammack R, Bertrand P, Guigliarelli B (1996) Biochemistry 35:16399–16406

    Article  CAS  PubMed  Google Scholar 

  17. González PJ, Barrera GI, Rizzi AC, Moura JJG, Passeggi MCG, Brondino CD (2009) J Inorg Biochem 103:1342–1346

    Article  PubMed  Google Scholar 

  18. More C, Asso M, Roger G, Guigliarelli B, Caldeira J, Moura J, Bertrand P (2005) Biochemistry 44:11628–11635

    Article  CAS  PubMed  Google Scholar 

  19. Brondino CD, Rivas MG, Romao MJ, Moura JJ, Moura I (2006) Acc Chem Res 39:788–796

    Article  CAS  PubMed  Google Scholar 

  20. Brondino CD, Romao MJ, Moura I, Moura JJ (2006) Curr Opin Chem Biol 10:109–114

    Article  CAS  PubMed  Google Scholar 

  21. Andrade SL, Brondino CD, Feio MJ, Moura I, Moura JJ (2000) Eur J Biochem 267:2054–2061

    Article  CAS  PubMed  Google Scholar 

  22. Caldeira J, Belle V, Asso M, Guigliarelli B, Moura I, Moura JJ, Bertrand P (2000) Biochemistry 39:2700–2707

    Article  CAS  PubMed  Google Scholar 

  23. Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY, Paddock ML (2000) J Am Chem Soc 122:7327–7341

    Article  CAS  Google Scholar 

  24. Eaton SS, Eaton GR (1988) Coord Chem Rev 83:29–72

    Article  CAS  Google Scholar 

  25. Hirsh DJ, Beck WF, Lynch JB, Que L, Brudvig GW (1992) J Am Chem Soc 114:7475–7481

    Article  CAS  Google Scholar 

  26. Thapper A, Boer DR, Brondino CD, Moura JJ, Romao MJ (2007) J Biol Inorg Chem 12:353–366

    Article  CAS  PubMed  Google Scholar 

  27. Bertrand P, More C, Guigliarelli B, Fournel A, Bennett B, Howes B (1994) J Am Chem Soc 116:3078–3086

    Article  CAS  Google Scholar 

  28. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  29. Romao MJ, Archer M, Moura I, Moura JJ, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176

    Article  CAS  PubMed  Google Scholar 

  30. Rebelo JM, Dias JM, Huber R, Moura JJ, Romao MJ (2001) J Biol Inorg Chem 6:791–800

    Article  CAS  PubMed  Google Scholar 

  31. Santos-Silva T, Ferroni F, Thapper A, Marangon J, González PJ, Rizzi AC, Moura I, Moura JJG, Romão MJ, Brondino CD (2009) J Am Chem Soc 131:7990–7998

    Article  CAS  PubMed  Google Scholar 

  32. Andrade SL, Brondino CD, Kamenskaya EO, Levashov AV, Moura JJ (2003) Biochem Biophys Res Commun 308:73–78

    Article  CAS  PubMed  Google Scholar 

  33. Dobbek H (2011) Coord Chem Rev 255:1104–1116

    Article  CAS  Google Scholar 

  34. Romao MJ (2009) Dalton Trans. doi:10.1039/B821108F:4053-4068

    Google Scholar 

  35. Moura JJ, Xavier AV, Bruschi M, Le Gall J, Hall DO, Cammack R (1976) Biochem Biophys Res Commun 72:782–789

    Article  CAS  PubMed  Google Scholar 

  36. Moura JJ, Xavier AV, Cammack R, Hall DO, Bruschi M, Le Gall J (1978) Biochem J 173:419–425

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  PubMed  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc. Wallingford

  39. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  40. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  41. Hay PJ, Wadt WRJ (1985) Chem Phys 82:270–283

    CAS  Google Scholar 

  42. Metz S, Thiel W (2009) J Am Chem Soc 131:14885–14902

    Article  CAS  PubMed  Google Scholar 

  43. Metz S, Wang D, Thiel W (2009) J Am Chem Soc 131:4628–4640

    Article  CAS  PubMed  Google Scholar 

  44. Boer DR, Thapper A, Brondino CD, Romao MJ, Moura JJ (2004) J Am Chem Soc 126:8614–8615

    Article  CAS  PubMed  Google Scholar 

  45. Lowe DJ, Barber MJ, Pawlik RT, Bray RC (1976) Biochem J 155:81–85

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Gutteridge S, Tanner SJ, Bray RC (1978) Biochem J 175:887–897

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Howes BD, Pinhal NM, Turner NA, Bray RC, Anger G, Ehrenberg A, Raynor JB, Lowe DJ (1990) Biochemistry 29:6120–6127

    Article  CAS  PubMed  Google Scholar 

  48. Neuman NI, Perec M, Gonzalez PJ, Passeggi MC, Rizzi AC, Brondino CD (2010) J Phys Chem A 114:13069–13075

    Article  CAS  PubMed  Google Scholar 

  49. Smith TD, Pilbrow JR (1974) Coord Chem Rev 13:173–278

    Article  CAS  Google Scholar 

  50. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer, Berlin

    Book  Google Scholar 

  51. Wilson GL, Greenwood RJ, Pilbrow JR, Spence JT, Wedd AG (1991) J Am Chem Soc 113:6803–6812

    Article  CAS  Google Scholar 

  52. Cosper MM, Neese F, Astashkin AV, Carducci MD, Raitsimring AM, Enemark JH (2005) Inorg Chem 44:1290–1301

    Article  CAS  PubMed  Google Scholar 

  53. Hoffmann SK, Hilczer W, Goslar J (1994) Appl Magn Reson 7:289–321

    Article  CAS  Google Scholar 

  54. Kahn O (1985) Angew Chem Int Ed 24:834–850

    Article  Google Scholar 

  55. Fletcher S (2014) J Solid State Electrochem (In Press)

Download references

Acknowledgments

We thank FONCYT, CONICET, and CAI + D-UNL in Argentina and Fundação para a Ciência e Tecnologia in Portugal for financial support. MCG and NIN thank CONICET for a fellowship grant. PJG, SDD, and CDB are members of CONICET—Argentina. Calculations were carried out on Avatar cluster at FaCAP (Facilidad de Computación de Alta Performance, Facultad de Bioquímica y Ciencias Biológicas, UNL, Santa Fe, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos D. Brondino.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, M.C., Neuman, N.I., Dalosto, S.D. et al. Isotropic exchange interaction between Mo and the proximal FeS center in the xanthine oxidase family member aldehyde oxidoreductase from Desulfovibrio gigas on native and polyalcohol inhibited samples: an EPR and QM/MM study. J Biol Inorg Chem 20, 233–242 (2015). https://doi.org/10.1007/s00775-014-1204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1204-8

Keywords

Navigation