Skip to main content
Log in

Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Catalytically inactive oxidized O2-sensitive [NiFe]-hydrogenases are characterized by a mixture of the paramagnetic Ni-A and Ni-B states. Upon O2 exposure, enzymes in a partially reduced state preferentially form the unready Ni-A state. Because partial O2 reduction should generate a peroxide intermediate, this species was previously assigned to the elongated Ni–Fe bridging electron density observed for preparations of [NiFe]-hydrogenases known to contain the Ni-A state. However, this proposition has been challenged based on the stability of this state to UV light exposure and the possibility of generating it anaerobically under either chemical or electrochemical oxidizing conditions. Consequently, we have considered alternative structures for the Ni-A species including oxidation of thiolate ligands to either sulfenate or sulfenic acid. Here, we report both new and revised [NiFe]-hydrogenases structures and conclude, taking into account corresponding characterizations by Fourier transform infrared spectroscopy (FTIR), that the Ni-A species contains oxidized cysteine and bridging hydroxide ligands instead of the peroxide ligand we proposed earlier. Our analysis was rendered difficult by the typical formation of mixtures of unready oxidized states that, furthermore, can be reduced by X-ray induced photoelectrons. The present study could be carried out thanks to the use of Desulfovibrio fructosovorans [NiFe]-hydrogenase mutants with special properties. In addition to the Ni-A state, crystallographic results are also reported for two diamagnetic unready states, allowing the proposal of a revised oxidized inactive Ni-SU model and a new structure characterized by a persulfide ion that is assigned to an Ni-‘Sox’ species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Av :

Allochromatium vinosum

Df :

Desulfovibrio fructosovorans

DvH:

Desulfovibrio vulgaris Hildenborough

DvMF:

Desulfovibrio vulgaris Miyazaki F

MSR:

Methionine sulfoxide reductase

WT:

Wild type

References

  1. Vignais PM, Billoud B (2007) Chem Rev 107:4206–4272. doi:10.1021/cr050196r

    Article  CAS  PubMed  Google Scholar 

  2. Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT (2011) Nature 479:249–252. doi:10.1038/nature10505

    Article  CAS  PubMed  Google Scholar 

  3. Shomura Y, Yoon KS, Nishihara H, Higuchi Y (2011) Nature 479:253–256. doi:10.1038/nature10504

    Article  CAS  PubMed  Google Scholar 

  4. Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC (2012) Proc Natl Acad Sci USA 109:5305–5310. doi:10.1073/pnas.1119806109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA (2013) J Am Chem Soc 135:2694–2707. doi:10.1021/ja311055d

    Article  CAS  PubMed  Google Scholar 

  6. Mouesca J-M, Fontecilla-Camps JC, Amara P (2013) Angew Chem Int Ed Engl 52:2002–2006. doi:10.1073/pnas.1302304110

    Article  CAS  PubMed  Google Scholar 

  7. Lauterbach L, Lenz O (2013) J Am Chem Soc 135:17897–17905. doi:10.1021/ja408420d

    Article  CAS  PubMed  Google Scholar 

  8. Volbeda A, Amara P, Iannello M, DeLacey AL, Cavazza C, Fontecilla-Camps JC (2013) Chem Comm 49:7061–7063. doi:10.1039/c3cc43619e

    Article  CAS  PubMed  Google Scholar 

  9. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273–4303. doi:10.1021/cr050195z

    Article  CAS  PubMed  Google Scholar 

  10. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249. doi:10.1007/s00775-005-0632-x

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79. doi:10.1016/0167-4838(85)90175-X

    Article  CAS  Google Scholar 

  12. Van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W (2006) J Biol Inorg Chem 11:41–51. doi:10.1007/s00775-005-0048-7

    Article  CAS  PubMed  Google Scholar 

  13. Lamle SE, Albracht SPJ, Armstrong FA (2004) J Am Chem Soc 126:14899–14909. doi:10.1021/ja047939v

    Article  CAS  PubMed  Google Scholar 

  14. Van der Zwaan JW, Coremans JM, Bouwens EC, Albracht SPJ (1990) Biochim Biophys Acta 1041:101–110. doi:10.1016/0167-4838(90)90051-G

    Article  PubMed  Google Scholar 

  15. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM (2002) J Am Chem Soc 124:281–286. doi:10.1021/ja010204v

    Article  CAS  PubMed  Google Scholar 

  16. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Structure 13:1635–1642. doi:10.1016/j.str.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  17. Söderhjelm P, Ryde U (2006) J Mol Struct (THEOCHEM) 770:199–219. doi:10.1016/j.theochem.2006.06.008

    Article  Google Scholar 

  18. Ogata H, Kellers P, Lubitz W (2010) J Mol Biol 420:428–444. doi:10.1016/j.jmb.2010.07.041

    Article  Google Scholar 

  19. AbouHamdan A, Burlat B, Gutiérrez-Sanz O, Liebgott P-P, Baffert C, De Lacey AL, Rousset M, Guigliarelli B, Léger C, Dementin S (2013) Nat Chem Biol 9:15–17. doi:10.1038/nchembio.1110

    Article  Google Scholar 

  20. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189. doi:10.1021/ja963802w

    Article  Google Scholar 

  21. Ravelli RBG, Garman EF (2006) Curr Opin Struct Biol 16:624–629. doi:10.1016/j.sbi.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  22. Bleijlevens B, Van Broekhuizen FA, De Lacey AL, Roseboom W, Fernandez VM, Albracht SPJ (2004) J Biol Inorg Chem 9:743–752. doi:10.1007/s00775-004-0570-z

    Article  CAS  PubMed  Google Scholar 

  23. Vincent KA, Belsey NA, Lubitz W, Armstrong FA (2006) J Am Chem Soc 128:7448–7449. doi:10.1021/ja061732f

    Article  CAS  PubMed  Google Scholar 

  24. De Lacey AL, Fernández VM, Rousset M, Cavazza C, Hatchikian EC (2003) J Biol Inorg Chem 8:129–134. doi:10.1007/s00775-002-0397-4

    Article  Google Scholar 

  25. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630. doi:10.1073/pnas.95.20.11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatchikian CE, Traore AS, Fernandez VM, Cammack R (1990) Eur J Biochem 187:635–643. doi:10.1111/j.1432-1033.1990.tb15347.x

    Article  CAS  PubMed  Google Scholar 

  27. Dementin S, Burlat B, De Lacey AL, Pardo A, Adryanczyk-Perrier G, Guigliarelli B, Fernandez VM, Rousset M (2004) J Biol Chem 279:10508–10513. doi:10.1074/jbc.M312716200

    Article  CAS  PubMed  Google Scholar 

  28. Leroux F, Dementin S, Burlat B, Cournac L, Volbeda A, Champ S, Martin L, Guigliarelli B, Bertrand P, Fontecilla-Camps JC, Rousset M, Léger C (2008) Proc Natl Acad Sci USA 105:11188–11193. doi:10.1073/pnas.0803689105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liebgott P-P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Léger C (2010) Nat Chem Biol 6:63–70. doi:10.1038/nchembio.276

    Article  CAS  PubMed  Google Scholar 

  30. Vernède X, Fontecilla-Camps JC (1999) J Appl Cryst 32:505–509. doi:10.1107/S0021889899002678

    Article  Google Scholar 

  31. Kabsch W (2010) Acta Crystallogr Sect D Biol Crystallogr 66:125–132. doi:10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  32. Karplus PA, Diederichs K (2012) Science 336:1030–1033. doi:10.1126/science.1218231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Acta Crystallogr Sect D Biol Crystallogr 67:235–242. doi:10.1107/S0907444910045749

    Article  CAS  Google Scholar 

  34. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Cryst 40:658–674. doi:10.1107/S0021889807021206

    Article  CAS  Google Scholar 

  35. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) Acta Crystallogr Sect D Biol Crystallogr 67:355–367. doi:10.1107/S0907444911001314

    Article  CAS  Google Scholar 

  36. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr Sect D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493

    Article  CAS  Google Scholar 

  37. De Lacey AL, Fernández VM, Rousset M, Cammack R (2007) Chem Rev 107:4304–4330. doi:10.1021/cr0501947

    Article  PubMed  Google Scholar 

  38. Van Gastel M (2010) Appl Magn Reson 37:207–218. doi:10.1007/s00723-009-0044-0

    Article  Google Scholar 

  39. Wood PM (1988) Biochem J 253:287–289

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Volbeda A, Montet Y, Vernède X, Hatchikian EC, Fontecilla-Camps JC (2002) Int J Hydrogen Energy 27:1449–1461. doi:10.1016/S0360-3199(02)00072-1

    Article  CAS  Google Scholar 

  41. Kumar M, Colpas GJ, Day RO, Maroney MJ (1989) J Am Chem Soc 111:8323–8325. doi:10.1021/ja00203a068

    Article  CAS  Google Scholar 

  42. Farmer PJ, Verpeaux J-N, Amatore C, Darensbourg MY, Musie G (1994) J Am Chem Soc 116:9355–9356. doi:10.1021/ja00099a073

    Article  CAS  Google Scholar 

  43. Marques MC, Coelho R, Pereira IAC, Matias PM (2013) Int J Hydrogen Energy 38:8664–8682. doi:10.1016/j.ijhydene.2013.04.132

    Article  CAS  Google Scholar 

  44. Pandelia M-E, Ogata H, Lubitz W (2010) Chem Phys Chem 11:1127–1140. doi:10.1002/cphc.200900950

    CAS  PubMed  Google Scholar 

  45. Claiborne A, Yeh JI, Mallet TC, Luba J, Crane EJ, Charrier V, Parsonage D (1999) Biochemistry 38:15407–15416. doi:10.1021/bi992025k

    Article  CAS  PubMed  Google Scholar 

  46. Boschi-Muller S, Gand A, Branlant G (2008) Arch Biochem Biophys 474:266–273. doi:10.1016/j.abb.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  47. Tarrago L, Laugier E, Zaffagnini M, Marchand CH, Le Maréchal P, Lemaire SD, Rey P (2010) J Biol Chem 285:14964–14972. doi:10.1074/jbc.M110.108373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagahara N, Katayama A (2005) J Biol Chem 280:34569–34576. doi:10.1074/jbc.M505643200

    Article  CAS  PubMed  Google Scholar 

  49. Liebgott P-P, de Lacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Léger C, Dementin S (2011) J Am Chem Soc 133:986–997. doi:10.1021/ja108787s

    Article  CAS  PubMed  Google Scholar 

  50. Marques MC, Coelho R, De Lacey AL, Pereira IAC, Matias PM (2010) J Mol Biol 396:893–907. doi:10.1016/j.jmb.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  51. Brunger AT (2010) Nature 355:473–475. doi:10.1038/355472a0

    Google Scholar 

Download references

Acknowledgments

We thank the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and the Centre National de la Recherche Scientifique (CNRS) for institutional funding, the Direction des Sciences du Vivant of the CEA for funding through the Bioenergy Program, the Agence Nationale de Recherche for further financial support (project Hyliox, contract n° ANR-07-BIOE-010) and the staff at the used ESRF beamlines for assistance with X-ray data collections. ALDL and OG-S thank the Spanish MINECO for financial support (project CTQ2012-32448) and a FPI grant, respectively. In addition, P-PL, SD and MR thank the Pôle de Compétitivité Capénergies for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Volbeda.

Additional information

An Interactive 3D Complement page in Proteopedia is available at: http://proteopedia.org/wiki/index.php/Journal:JBIC:28

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volbeda, A., Martin, L., Barbier, E. et al. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. J Biol Inorg Chem 20, 11–22 (2015). https://doi.org/10.1007/s00775-014-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1203-9

Keywords

Navigation