Skip to main content
Log in

The ferredoxin-like domain of the activating enzyme is required for generating a lasting glycyl radical in 4-hydroxyphenylacetate decarboxylase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

4-Hydroxyphenylacetate decarboxylase-activating enzyme (4Hpad-AE) uses S-adenosylmethionine (SAM or AdoMet) and a [4Fe-4S]2+/+ cluster (RS cluster) to generate a stable glycyl radical on the decarboxylase. 4Hpad-AE might bind up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert C-terminal to the RS cluster-binding motif. Except for the AEs of pyruvate formate-lyase and anaerobic ribonucleotide reductase, all glycyl radical-activating enzymes possess a similar ferredoxin-like domain, whose functional role is still poorly understood. To assess the role of the putative ferredoxin clusters from 4Hpad-AE, we combined biochemical and spectroscopic methods to characterize a truncated version of the protein (Δ66-AE) devoid of the ferredoxin-like domain. We found that Δ66-AE is stable, harbors a fully active RS cluster and can activate the decarboxylase. From the similar cleavage rates for S-adenosylmethionine of Δ66-AE and wild-type AE, we infer the reactivity of the RS cluster is unperturbed by the absence of the ferredoxin-like domain. Thus, the auxiliary clusters are not required as electron conduit to the RS cluster for effective reductive cleavage of SAM. The activation of the decarboxylase by Δ66-AE is almost as fast as with wild-type AE, but the generated glycyl radical is short living. We postulate that the ferredoxin-like domain is not required for SAM-dependent glycyl radical generation in the decarboxylase, but is necessary for producing a lasting glycyl radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ferredoxin clusters:

Auxiliary [4Fe-4S] clusters coordinated by the ferredoxin-like domain

Nrd-AE:

Class-III ribonucleotide reductase-activating enzyme

EPR:

Electron paramagnetic resonance

GRE:

Glycyl radical enzyme

HPLC:

High-performance liquid chromatography

Δ66-AE:

4Hpad-AE variant devoid of the 2x[4Fe-4S] ferredoxin-like domain

4Hpad-AE:

4-Hydroxyphenylacetate decarboxylase-activating enzyme

Fe/S:

Iron–sulfur cluster

ITC:

Isothermal titration calorimetry

Pfl-AE:

Pyruvate formate-lyase-activating enzyme

RS cluster:

SAM binding [4Fe-4S]2+/1+ cluster

WT-AE:

Wild-type 4Hpad-AE (12.0 ± 0.3 mol Fe per mol protein)

References

  1. Yu L, Blaser M, Andrei PI, Pierik AJ, Selmer T (2006) Biochemistry 45:9584–9592

    Article  CAS  PubMed  Google Scholar 

  2. Martins BM, Blaser M, Feliks M, Ullmann GM, Buckel W, Selmer T (2011) J Am Chem Soc 133:14666–14674

    Article  CAS  PubMed  Google Scholar 

  3. D’Ari L, Barker HA (1985) Arch Microbiol 143:311–312

    Article  PubMed  Google Scholar 

  4. Feliks M, Martins BM, Ullmann GM (2013) J Am Chem Soc 135:14574–14585

    Article  CAS  PubMed  Google Scholar 

  5. Dawson LF, Stabler RA, Wren BW (2008) J Med Microbiol 57:745–749

    Article  PubMed  Google Scholar 

  6. Shisler K, Broderick JB (2014) Arch Biochem Bioph 546:64–71

    Article  CAS  Google Scholar 

  7. Eklund H, Fontecave M (1999) Structure 7:257–262

    Article  Google Scholar 

  8. Selvaraj B, Pierik AJ, Bill E, Martins BM (2013) J Biol Inorg Chem 18:633–643

    Article  CAS  PubMed  Google Scholar 

  9. Frey PA, Hegeman AD, Ruzicka FJ (2008) Crit Rev Biochem Mol Biol 43:63–88

    Article  CAS  PubMed  Google Scholar 

  10. Lanz ND, Booker SJ (2012) Biochim Biophys Acta 1824:1196–1212

    Article  CAS  PubMed  Google Scholar 

  11. Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Proc Natl Acad Sci 81:1332–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gambarelli S, Luttringer F, Padovani D, Mulliez E, Fontecave M (2005) Chem Biochem 6:1960–1962

    CAS  Google Scholar 

  13. Selmer T, Pierik AJ, Heider J (2005) Biol Chem 386:981–988

    Article  CAS  PubMed  Google Scholar 

  14. Craciun S, Balskus EP (2012) Proc Natl Acad Sci 109:21307–21312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Demick JM, Lanzilotta WN (2011) Biochemistry (Us) 50:440–442

    Article  CAS  Google Scholar 

  16. Fish WW (1988) Methods Enzymol 158:357–364

    Article  CAS  PubMed  Google Scholar 

  17. Sweeney WV, Rabinowitz JC (1980) Ann Rev Biochem 49:139–161

    Article  CAS  PubMed  Google Scholar 

  18. Gütlich P, Bill E, Trautwein AX (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin

    Book  Google Scholar 

  19. Leatherbarrow RJ (2009) GraFit Version 5.5.0 Ed., Erithacus Software Limited, Horley

  20. Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Proc Natl Acad Sci 105:16137–16141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, Hoffman BM, Broderick JB (2005) Inorg Chem 44:727–741

    Article  CAS  PubMed  Google Scholar 

  22. Ollagnier S, Mulliez E, Schmidt PP, Eliasson R, Gaillard J, Deronzier C, Bergman T, Graslund A, Reichard P, Fontecave M (1997) J Biol Chem 272:24216–24223

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Naik SG, Ortillo DO, Garcia-Serres R, Li M, Broderick WE, Huynh BH, Broderick JB (2009) Biochemistry 48:9234–9241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hilberg M, Pierik AJ, Bill E, Friedrich T, Lippert ML, Heider J (2012) J Biol Inorg Chem 17:49–56

    Article  CAS  PubMed  Google Scholar 

  25. Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O (2010) FEBS J 277:1906–1920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Grove T, Ahlum JH, Qin RM, Lanz ND, Radle MI, Krebs C, Booker SJ (2013) Biochemistry 52:2874–2887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Goldman PJ, Grove TL, Sites LA, McLaughlin MI, Booker SJ, Drennan CL (2013) Proc Natl Acad Sci 110:8519–8524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ (2008) Biochemistry 47:7523–7538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Peng Y, Veneziano SE, Gillispie GD, Broderick JB (2010) J Biol Chem 285:27224–27231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG) (Grants MA 3348/2-1 and MA 3348/2-2) supported this work. We thank Thorsten Selmer (FH Aachen, Germany) for the 4Hpad clone, Silke Steinborn and Rainer Dietrich (Strukturbiologie/Biochemie) for technical assistance; Bernd Mienert (MPI-CEC) for recording the Mössbauer spectra; and all members of the Strukturbiologie/Biochemie group for helpful discussions, especially Tobias Werther for help in the analysis of the ITC experiments. We are grateful to Wolfgang Buckel (MPI für terrestrische Mikrobiologie, Marburg, Germany) for continuous support and helpful discussions. We also acknowledge the reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta M. Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, B., Pierik, A.J., Bill, E. et al. The ferredoxin-like domain of the activating enzyme is required for generating a lasting glycyl radical in 4-hydroxyphenylacetate decarboxylase. J Biol Inorg Chem 19, 1317–1326 (2014). https://doi.org/10.1007/s00775-014-1189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1189-3

Keywords

Navigation