Skip to main content
Log in

The stability of DNA intrastrand cross-links of antitumor transplatin derivative containing non-bulky methylamine ligands

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oligonucleotides modified by clinically ineffective trans-diamminedichloridoplatinum(II) (transplatin) have been shown to be effective modulators of gene expression. This is so because in some nucleotide sequences the 1,3-GNG intrastrand adducts formed by transplatin in double-helical DNA readily rearrange into interstrand cross-links so that they can cross-link the oligonucleotides to their targets. On the other hand, in a number of other sequences these intrastrand adducts are relatively stable, which represents the major difficulty in the clinical use of the antisense transplatin-modified oligonucleotides. Therefore, we examined in this study, the stability of 1,3-GNG intrastrand adducts in double-helical DNA formed by a new antitumor derivative of transplatin, trans-[Pt(CH3NH2)2Cl2], in the sequence contexts in which transplatin formed relatively stable intrastrand cross-links which did not readily rearranged into interstrand cross-links. We have found that 1,3-GNG intrastrand adducts in double-helical DNA formed by trans-[Pt(CH3NH2)2Cl2] even in such sequences readily rearrange into interstrand cross-links. This work also suggests that an enhanced frequency of intrastrand cross-links yielded by trans-[Pt(CH3NH2)2Cl2] is a consequence of the fact that these DNA lesions considerably distort double-helical DNA in far more sequence contexts than parent transplatin. Our results suggest that trans-[Pt(CH3NH2)2Cl2]-modified oligonucleotides represent promising candidates for new agents in antisense or antigene approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

Bp:

Base pair

CL:

Cross-link

DEPC:

Diethyl pyrocarbonate

DMS:

Dimethyl sulfate

FAAS:

Flameless atomic absorption spectroscopy

HPLC:

High-performance liquid chromatography

PAA:

Polyacrylamide

Transplatin:

trans-Diamminedichloridoplatinum(II)

References

  1. Weiss B (1997) Antisense oligodeoxynucleotides and antisense RNA novel pharmacological and therapeutic agents. CRC Press, Boca Raton

    Google Scholar 

  2. Dean NM, Cooper SR, Shanahan W, Taylor J, Myers K (2000) J Clin Ligand Assay 23:43–49

    Google Scholar 

  3. Galderisi U, Cascino A, Giordano A (1999) J Cell Physiol 181:251–257

    Article  PubMed  CAS  Google Scholar 

  4. Fabbro D, Muller M, Geiger T (1998). In: Crooke ST (ed) Antisense research and application. Springer, Berlin, Heidelberg, Platz 3/W-1000 Berlin 33/Germany, pp 395–425

  5. Giraud-Panis M-J, Leng M (2000) Pharmacol Ther 85:175–181

    Article  PubMed  CAS  Google Scholar 

  6. Aupeix-Scheidler K, Chabas S, Bidou L, Rousset J-P, Leng M, Toulme J–J (2000) Nucleic Acids Res 28:438–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Brabec V, Leng M (1993) Proc Natl Acad Sci USA 90:5345–5349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Boudvillain M, Guerin M, Dalbies R, Saison-Behmoaras T, Leng M (1997) Biochemistry 36:2925–2931

    Article  PubMed  CAS  Google Scholar 

  9. Kasparkova J, Marini V, Bursova V, Brabec V (2008) Biophys J 95:4361–4371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Colombier C, Boudvillain M, Leng M (1997) Antisense Nucleic Acid Drug Dev 7:397–402

    Article  PubMed  CAS  Google Scholar 

  11. Frybortova M, Novakova O, Stepankova J, Novohradsky V, Gibson D, Kasparkova J, Brabec V (2013) J Inorg Biochem 126:46–54

    Article  PubMed  CAS  Google Scholar 

  12. Park GY, Wilson JJ, Song Y, Lippard SJ (2012) Proc Natl Acad Sci USA 109:11987–11992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Comess KM, Costello CE, Lippard SJ (1990) Biochemistry 29:2102–2110

    Article  PubMed  CAS  Google Scholar 

  14. Brabec V, Sip M, Leng M (1993) Biochemistry 32:11676–11681

    Article  PubMed  CAS  Google Scholar 

  15. Brabec V, Reedijk J, Leng M (1992) Biochemistry 31:12397–12402

    Article  PubMed  CAS  Google Scholar 

  16. Leng M, Locker D, Giraud-Panis MJ, Schwartz A, Intini FP, Natile G, Pisano C, Boccarelli A, Giordano D, Coluccia M (2000) Mol Pharmacol 58:1525–1535

    PubMed  CAS  Google Scholar 

  17. Kasparkova J, Vojtiskova M, Natile G, Brabec V (2008) Chem Eur J 14:1330–1341

    Article  PubMed  CAS  Google Scholar 

  18. Bailly C, Waring MJ (1997). In: Fox KR (ed) Drug-DNA interaction protocols. Humana Press Inc, 999 Riverview Dr/Ste 208/Totowa/NJ 07512-1165, pp 51–79

  19. Ross SA, Burrows CJ (1996) Nucleic Acids Res 24:5062–5063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Brabec V, Neplechova K, Kasparkova J, Farrell N (2000) J Biol Inorg Chem 5:364–368

    Article  PubMed  CAS  Google Scholar 

  21. Boudvillain M, Dalbies R, Aussourd C, Leng M (1995) Nucleic Acids Res 23:2381–2388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Dalbies R, Boudvillain M, Leng M (1995) Nucleic Acids Res 23:949–953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Nielsen PE (1990) J Mol Recogn 3:1–24

    Article  CAS  Google Scholar 

  24. Kasparkova J, Farrell N, Brabec V (2000) J Biol Chem 275:15789–15798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (Grants 13-08273S) and the Ministry of Education of the CR (Grant LH14317). Research of M. F. was also supported by the student project of the Palacky University in Olomouc (Grant IGAPrF 2014 029). The authors acknowledge that their participation in the EU COST Action CM1105 enabled them to exchange regularly the most recent ideas in the field of metallodrugs with several European colleagues. The authors also thank to Prof. Dan Gibson for a kind gift of trans-[Pt(CH3NH2)2Cl2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Brabec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frybortova, M., Novakova, O. & Brabec, V. The stability of DNA intrastrand cross-links of antitumor transplatin derivative containing non-bulky methylamine ligands. J Biol Inorg Chem 19, 1203–1208 (2014). https://doi.org/10.1007/s00775-014-1176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1176-8

Keywords

Navigation