JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 8, pp 985–992 | Cite as

Yeast copper–zinc superoxide dismutase can be activated in the absence of its copper chaperone

  • Kevin W. Sea
  • Yuewei Sheng
  • Herman L. Lelie
  • Lindsay Kane Barnese
  • Armando Durazo
  • Joan Selverstone Valentine
  • Edith Butler Gralla
Original Paper


Copper–zinc superoxide dismutase (Sod1) is an abundant intracellular enzyme that catalyzes the disproportionation of superoxide to give hydrogen peroxide and dioxygen. In most organisms, Sod1 acquires copper by a combination of two pathways, one dependent on the copper chaperone for Sod1 (CCS), and the other independent of CCS. Examples have been reported of two exceptions: Saccharomyces cerevisiae, in which Sod1 appeared to be fully dependent on CCS, and Caenorhabditis elegans, in which Sod1 was completely independent of CCS. Here, however, using overexpressed Sod1, we show there is also a significant amount of CCS-independent activation of S. cerevisiae Sod1, even in low-copper medium. In addition, we show CCS-independent oxidation of the disulfide bond in S. cerevisiae Sod1. There appears to be a continuum between CCS-dependent and CCS-independent activation of Sod1, with yeast falling near but not at the CCS-dependent end.


Disulfide bond Sod1 Copper chaperone CCS1 Copper transport 


  1. 1.
    McCord JM, Fridovich I (1969) J Biol Chem 244:6049–6055PubMedGoogle Scholar
  2. 2.
    Sohn SH (2006) Ph.D. Dissertation. Department of Chemistry and Biochemistry, University of California, Los AngelesGoogle Scholar
  3. 3.
    Valentine JS, Gralla EB (1997) Science 278:817–818PubMedCrossRefGoogle Scholar
  4. 4.
    Culotta VC, Klomp LWJ, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) J Biol Chem 272:23469–23472PubMedCrossRefGoogle Scholar
  5. 5.
    Corson LB, Strain JJ, Culotta VC, Cleveland DW (1998) Proc Natl Acad Sci USA 95:6361–6366PubMedCrossRefGoogle Scholar
  6. 6.
    Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Proc Natl Acad Sci USA 101:5964–5969PubMedCrossRefGoogle Scholar
  7. 7.
    Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ, Culotta VC (2009) J Biol Chem 284:21863–21871PubMedCrossRefGoogle Scholar
  8. 8.
    Leitch JM, Li CX, Baron JA, Matthews LM, Cao X, Hart PJ, Culotta VC (2011) Biochemistry 51:677–685. doi:10.1021/bi201353y CrossRefGoogle Scholar
  9. 9.
    Jensen L, Culotta V (2005) J Biol Chem 280:41373–41379PubMedCrossRefGoogle Scholar
  10. 10.
    Lopez-Mirabal HR, Winther JR (2008) Biochim Biophys Acta Mol Cell Res 1783:629–640CrossRefGoogle Scholar
  11. 11.
    Banci L, Bertini I, Cantini F, Amelio N, Gaggelli E (2005) J Biol Chem 281:2333–2337PubMedCrossRefGoogle Scholar
  12. 12.
    Furukawa Y, Torres AS, O’Halloran TV (2004) EMBO J 23:2872–2881PubMedCrossRefGoogle Scholar
  13. 13.
    Sherman F, Fink GR, Hicks JB (1974) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  14. 14.
    Flohe L, Otting F (1984) Methods Enzymol 105:93–104PubMedCrossRefGoogle Scholar
  15. 15.
    Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB, Miller LM, Borchelt DR, Valentine JS, Whitelegge JP (2011) J Biol Chem 286:2795–2806. doi:10.1074/jbc.M110.186999 PubMedCrossRefGoogle Scholar
  16. 16.
    Quick KL, Hardt JI, Dugan LL (2000) J Neurosci Methods 97:139–144PubMedCrossRefGoogle Scholar
  17. 17.
    Slekar KH, Kosman DJ, Culotta VC (1996) J Biol Chem 271:28831–28836PubMedCrossRefGoogle Scholar
  18. 18.
    Kane L (2010) Ph.D. Dissertation, Department of  Chemistry & Biochemistry. University of California, Los AngelesGoogle Scholar
  19. 19.
    Doucette P (2004) Ph.D. Dissertation, Department of Chemistry and Biochemistry. University of California, Los AngelesGoogle Scholar
  20. 20.
    Rodriguez J (2004) Ph.D. Dissertation, Department of Chemistry and Biochemistry. University of California, Los AngelesGoogle Scholar
  21. 21.
    Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Proc Natl Acad Sci USA 101:5964–5969PubMedCrossRefGoogle Scholar
  22. 22.
    Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Proc Natl Acad Sci USA 97:2886–2891PubMedCrossRefGoogle Scholar
  23. 23.
    Kirby K, Jensen LT, Binnington J, Hilliker AJ, Ulloa J, Culotta VC, Phillips JP (2008) J Biol Chem 283:35393–35401PubMedCrossRefGoogle Scholar
  24. 24.
    Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li HM, Jinn TL (2005) Plant Physiol 139:425–436PubMedCrossRefGoogle Scholar
  25. 25.
    Laliberte J, Whitson LJ, Beaudoin J, Holloway SP, Hart PJ, Labbe S (2004) J Biol Chem 279:28744–28755PubMedCrossRefGoogle Scholar
  26. 26.
    Leary S (2010) Antioxid Redox Signal 13:1403–1416PubMedCrossRefGoogle Scholar
  27. 27.
    Kawamata H, Manfredi G (2008) Hum Mol Genet 17:3303–3317PubMedCrossRefGoogle Scholar
  28. 28.
    Freedman JH, Ciriolo MR, Peisach J (1989) J Biol Chem 264:5598–5605PubMedGoogle Scholar
  29. 29.
    Ciriolo MR, Desideri A, Paci M, Rotilio G (1990) J Biol Chem 265:11030–11034PubMedGoogle Scholar
  30. 30.
    Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) J Biol Chem 279:14447–14455PubMedCrossRefGoogle Scholar
  31. 31.
    Cobine PA, Pierrel F, Bestwick ML, Winge DR (2006) J Biol Chem 281:36552–36559PubMedCrossRefGoogle Scholar
  32. 32.
    Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K (2005) J Mol Biol 353:937–944PubMedCrossRefGoogle Scholar
  33. 33.
    Gralla EB, Valentine JS (1991) J Bacteriol 173:5918–5920PubMedGoogle Scholar
  34. 34.
    Wei J-PJ, Srinivasan C, Han H, Valentine JS, Gralla EB (2001) J Biol Chem 276:44798–44803PubMedCrossRefGoogle Scholar
  35. 35.
    Sikorski RS, Hieter P (1989) Genetics 122:19–27PubMedGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Kevin W. Sea
    • 1
    • 2
  • Yuewei Sheng
    • 1
  • Herman L. Lelie
    • 1
    • 3
  • Lindsay Kane Barnese
    • 1
    • 4
  • Armando Durazo
    • 1
    • 5
  • Joan Selverstone Valentine
    • 1
    • 6
  • Edith Butler Gralla
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of ChemistryPomona CollegeClaremontUSA
  3. 3.Bruin Biometrics LLCLos AngelesUSA
  4. 4.Concordia UniversityIrvineUSA
  5. 5.Department of Chemical and Environmental EngineeringUniversity of ArizonaTucsonUSA
  6. 6.Department of Bioinspired ScienceEwha Womans UniversitySeoul 120-750Republic of Korea

Personalised recommendations