Skip to main content

Advertisement

Log in

Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cu(I) exhibits high affinity for thiolate ligands, suggesting that thiol-rich zinc or iron binding sites may be subject to disruption during copper stress conditions. Zinc fingers constitute a large class of metalloproteins that use a combination of cysteine and histidine residues that bind Zn(II) as a structural element. Despite the shared preference of both copper and zinc for thiolate and amine coordination, the susceptibility of zinc finger domains toward copper substitution is not well studied. We report spectroscopic studies that characterize the Cu(I) binding properties of the zinc finger consensus peptides CP-CCHH, CP-CCHC, and CP-CCCC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Cu(I) binds to both the apopeptides and the Co(II)-substituted peptides, and the stoichiometry of Cu(I) binding is dependent on the number of cysteine thiols at the metal binding site. Fluorescence studies of the Zn(II)–NCp7_C complex indicate that Cu(I) also effectively competes with Zn(II) at the metal binding site, despite the high affinity of Zn(II) for the CCHC binding motif. Circular dichroism studies on both CP-CCHC and NCp7_C show that the conformations of the Cu(I)-bound complexes differ substantially from those of the Zn(II) species, implying that Cu(I) substitution is likely to impact zinc finger function. These results show that for the peptides studied here, Cu(I) is the thermodynamically favored metal despite the known high Zn(II) affinity of zinc finger domains, suggesting that Cu(I)-substituted zinc finger domains might be relevant in the context of both copper toxicity mechanisms and copper-responsive transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninate

CD:

Circular dichroism

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

NCp7:

Nucleocapsid protein p7 of human immunodeficiency virus type 1

NCp7_C:

C-terminal zinc finger domain of NCp7

ZF:

Zinc finger

References

  1. Boal AK, Rosenzweig AC (2009) Chem Rev 109:4760–4779

    Article  PubMed  CAS  Google Scholar 

  2. Robinson NJ, Winge DR (2010) Annu Rev Biochem 79:537–562

    Article  PubMed  CAS  Google Scholar 

  3. Kaplan JH, Lutsenko S (2009) J Biol Chem 284:25461–25465

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B, Gutteridge JMC (1990) Methods Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  5. Macomber L, Rensing C, Imlay JA (2007) J Bacteriol 189:1616–1626

    Article  PubMed  CAS  Google Scholar 

  6. Adlard PA, Bush AI (2006) J Alzheimers Dis 10:145–163

    PubMed  Google Scholar 

  7. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044

    Article  PubMed  CAS  Google Scholar 

  8. Brown DR (2009) Dalton Trans 4069–4076

  9. Macomber L, Imlay JA (2009) Proc Natl Acad Sci USA 106:8344–8349

    Article  PubMed  CAS  Google Scholar 

  10. Tottey S, Patterson CJ, Banci L, Bertini I, Felli IC, Pavelkova A, Dainty SJ, Pernil R, Waldron KJ, Foster AW, Robinson NJ (2012) Proc Natl Acad Sci USA 109:95–100

    Article  PubMed  CAS  Google Scholar 

  11. Berg JM, Shi Y (1996) Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  12. Berg JM, Godwin HA (1997) Annu Rev Biophys Biomol Struct 26:357–371

    Article  PubMed  CAS  Google Scholar 

  13. Krishna SS, Majumdar I, Grishin NV (2003) Nucleic Acids Res 31:532–550

    Article  PubMed  CAS  Google Scholar 

  14. Laity JH, Lee BM, Wright PE (2001) Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  15. Andreini C, Banci L, Bertini I, Rosato A (2006) J Proteome Res 5:196–201

    Article  PubMed  CAS  Google Scholar 

  16. diTargiani RC, Lee SJ, Wassink S, Michel SL (2006) Biochemistry 45:13641–13649

    Google Scholar 

  17. Krizek BA, Berg JM (1992) J Am Chem Soc 31:2984–2986

    CAS  Google Scholar 

  18. Krizek BA, Merkle DL, Berg JM (1993) Inorg Chem 32:937–940

    Article  CAS  Google Scholar 

  19. Michalek JL, Lee SJ, Michel SLJ (2012) J Inorg Biochem 112:32–38

    Article  PubMed  CAS  Google Scholar 

  20. Bal W, Schwerdtle T, Hartwig A (2003) Chem Res Toxicol 16:242–248

    Article  PubMed  CAS  Google Scholar 

  21. Lai Z, Freedman DA, Levine AJ, McLendon GL (1998) Biochemistry 37:17005–17015

    Article  PubMed  CAS  Google Scholar 

  22. Payne JC, Rous BW, Tenderholt AL, Godwin HA (2003) Biochemistry 42:14214–14224

    Article  PubMed  CAS  Google Scholar 

  23. Roehm PC, Berg JM (1997) Biochemistry 36:10240–10245

    Article  PubMed  CAS  Google Scholar 

  24. Ghering AB, Jenkins LM, Schenck BL, Deo S, Mayer RA, Pikaart MJ, Omichinski JG, Godwin HA (2005) J Am Chem Soc 127:3751–3759

    Article  PubMed  CAS  Google Scholar 

  25. Payne JC, Horst MAt, Godwin HA (1999) J Am Chem Soc 121:6850–6855

    Article  CAS  Google Scholar 

  26. Franzman MA, Barrios AM (2008) Inorg Chem 2008:3928–3930

    Article  Google Scholar 

  27. Larabee JL, Hocker JR, Hanas JS (2005) Chem Res Toxicol 18:1943–1954

    Article  PubMed  CAS  Google Scholar 

  28. Handel ML, deFazio A, Watts CK, Day RO, Sutherland RL (1991) Mol Pharmacol 40:613–618

    PubMed  CAS  Google Scholar 

  29. Zawia NH, Sharan R, Brydie M, Oyama T, Crumpton T (1998) Dev Brain Res 107:291–298

    Article  CAS  Google Scholar 

  30. Asmuss M, Mullenders LH, Eker A, Hartwig A (2000) Carcinogenesis 21:2097–2104

    Article  PubMed  CAS  Google Scholar 

  31. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Environ Health Perspect 110(Suppl 5):797–799

    Article  PubMed  CAS  Google Scholar 

  32. Predki PF, Sarkar B (1992) J Biol Chem 267:5842–5846

    PubMed  CAS  Google Scholar 

  33. Hutchens TW, Allen MA, Li CM, Yip T-T (1992) FEBS Lett 309:170–174

    Article  PubMed  CAS  Google Scholar 

  34. Badarau A, Dennison C (2011) Proc Natl Acad Sci USA 108:13007–13012

    Article  PubMed  CAS  Google Scholar 

  35. Xiao ZG, Brose J, Schimo S, Ackland SM, La Fontaine S, Wedd AG (2011) J Biol Chem 286:11047–11055

    Article  PubMed  CAS  Google Scholar 

  36. Sommer F, Kropat J, Malasarn D, Grossoehme NE, Chen XH, Giedroc DP, Merchant SS (2010) Plant Cell 22:4098–4113

    Article  PubMed  CAS  Google Scholar 

  37. Krizek BA, Amann BT, Kilfoil VJ, Merkle DL, Berg JM (1991) J Am Chem Soc 113:4518–4523

    Article  CAS  Google Scholar 

  38. Seneque O, Latour JM (2010) J Am Chem Soc 132:17760–17774

    Article  PubMed  CAS  Google Scholar 

  39. Darlix JL, Lapadattapolsky M, Derocquigny H, Roques BP (1995) J Mol Biol 254:523–537

    Article  PubMed  CAS  Google Scholar 

  40. South TL, Blake PR, Hare DR, Summers MF (1991) Biochemistry 30:6342–6349

    Article  PubMed  CAS  Google Scholar 

  41. Bombarda E, Cherradi H, Morellet N, Roques BP, Mely Y (2002) Biochemistry 41:4312–4320

    Article  PubMed  CAS  Google Scholar 

  42. Mely Y, De Rocquigny H, Morellet N, Roques BP, Gerad D (1996) Biochemistry 35:5175–5182

    Article  PubMed  CAS  Google Scholar 

  43. Magyar JS, Godwin HA (2003) Anal Biochem 320:39–54

    Article  PubMed  CAS  Google Scholar 

  44. Riddles PW, Blakeley RL, Zerner B (1983) Methods Enzymol 91:49–60

    Article  PubMed  CAS  Google Scholar 

  45. Xiao ZG, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) J Am Chem Soc 126:3081–3090

    Article  PubMed  CAS  Google Scholar 

  46. Rousselot-Pailley P, Seneque O, Lebrun C, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P (2006) Inorg Chem 45:5510–5520

    Article  PubMed  CAS  Google Scholar 

  47. Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) Nat Chem Biol 3:60–68

    Article  PubMed  CAS  Google Scholar 

  48. Angeletti B, Waldron KJ, Freeman KB, Bawagan H, Hussain I, Miller CC, Lau KF, Tennant ME, Dennison C, Robinson NJ, Dingwall C (2005) J Biol Chem 280:17930–17937

    Article  PubMed  CAS  Google Scholar 

  49. Pountney DL, Schauwecker I, Zarn J, Vasak M (1994) Biochemistry 33:9699–9705

    Article  PubMed  CAS  Google Scholar 

  50. Fitzgerald DW, Coleman JE (1991) Biochemistry 30:5195–5201

    Article  PubMed  CAS  Google Scholar 

  51. Rich AM, Bombarda E, Schenk AD, Lee PE, Cox EH, Spuches AM, Hudson LD, Kieffer B, Wilcox DE (2012) J Am Chem Soc 134:10405–10418

    Article  PubMed  CAS  Google Scholar 

  52. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  53. Sutherland DEK, Stillman MJ (2011) Metallomics 3:444–463

    Article  PubMed  CAS  Google Scholar 

  54. Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Proc Natl Acad Sci USA 108:5980–5985

    Article  PubMed  CAS  Google Scholar 

  55. Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) Biochemistry 41:5822–5829

    Article  PubMed  CAS  Google Scholar 

  56. Cobine PA, Jones CE, Dameron CT (2002) J Inorg Biochem 88:192–196

    Article  PubMed  CAS  Google Scholar 

  57. Song IS, Chen HHW, Aiba I, Hossain A, Liang ZD, Klomp LWJ, Kuo MT (2008) Mol Pharmacol 74:705–713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Corporation Cottrell College Award (no. 7862 to K.E.S.), Macalester College, and Santa Clara University. We thank Robert Rossi of Macalester College for assistance with electronic absorption experiments and Daryl Eggers of San Jose University for use of his CD spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Splan.

Electronic supplementary material

775_2013_1012_MOESM1_ESM.pdf

Supplementary Material Electronic absorption data for Cu(I) and Co(II) complexes, titration spectra of Co(II)-substituted peptides with Zn(II), and binding constant data for FluoZin-1 is available as electronic supplementary material. (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doku, R.T., Park, G., Wheeler, K.E. et al. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides. J Biol Inorg Chem 18, 669–678 (2013). https://doi.org/10.1007/s00775-013-1012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1012-6

Keywords

Navigation