Skip to main content
Log in

Contrasting catalytic profiles of multiheme nitrite reductases containing CxxCK heme-binding motifs

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The multiheme cytochromes from Thioalkalivibrio nitratireducens (TvNiR) and Escherichia coli (EcNrfA) reduce nitrite to ammonium. Both enzymes contain His/His-ligated hemes to deliver electrons to their active sites, where a Lys-ligated heme has a distal pocket containing a catalytic triad of His, Tyr, and Arg residues. Protein-film electrochemistry reveals significant differences in the catalytic properties of these enzymes. TvNiR, but not EcNrfA, requires reductive activation. Spectroelectrochemistry implicates reduction of His/His-ligated heme(s) as being key to this process, which restricts the rate of hydroxide binding to the ferric form of the active-site heme. The K M describing nitrite reduction by EcNrfA varies with pH in a sigmoidal manner that is consistent with its modulation by (de)protonation of a residue with pK a ≈ 7.6. This residue is proposed to be the catalytic His in the distal pocket. By contrast, the K M for nitrite reduction by TvNiR decreases approximately linearly with increase of pH such that different features of the mechanism define this parameter for TvNiR. In other regards the catalytic properties of TvNiR and EcNrfA are similar, namely, the pH dependence of V max and the nitrite dependence of the catalytic current–potential profiles resolved by cyclic voltammetry, such that the determinants of these properties appear to be conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EcNrfA:

Escherichia coli NrfA

Hepes:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

LMCT:

Ligand-to-metal charge transfer

MCD:

Magnetic circular dichroism

MOTTLE:

Magnetic circular dichroism compatible optically transparent thin layer electrochemistry

PFE:

Protein-film electrochemistry

PGE:

Pyrolytic graphite edge

SHE:

Standard hydrogen electrode

TvNiR:

Thioalkalivibrio nitratireducens octaheme nitrite reductase

References

  1. Richardson DJ, Watmough NJ (1999) Curr Opin Chem Biol 3:207–219

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Espinosa RM, Cole JA, Richardson DJ, Watmough NJ (2011) Biochem Soc Trans 39:175–178

    Article  PubMed  CAS  Google Scholar 

  3. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck P (1999) Nature 400:476–480

    Article  PubMed  CAS  Google Scholar 

  4. Einsle O, Stach P, Messerschmidt A, Simon J, Kroger A, Huber R, Kroneck PMH (2000) J Biol Chem 275:39608–39616

    Article  PubMed  CAS  Google Scholar 

  5. Bamford VA, Angove HC, Seward HE, Thomson AJ, Cole JA, Butt JN, Hemmings AM, Richardson DJ (2002) Biochemistry 41:2921–2931

    Article  PubMed  CAS  Google Scholar 

  6. Cunha CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ (2003) J Biol Chem 278:17455–17465

    Article  PubMed  CAS  Google Scholar 

  7. Rodrigues ML, Oliveira TF, Pereira IAC, Archer M (2006) EMBO J 25:5951–5960

    Article  PubMed  CAS  Google Scholar 

  8. Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, Schmidt M, Pacheco AA (2012) J Biol Inorg Chem 17:647–662

    Article  PubMed  CAS  Google Scholar 

  9. Polyakov KM, Boyko KM, Tikhonova TV, Slutsky A, Antipov AN, Zvyagilskaya RA, Popov AN, Bourenkov GP, Lamzin VS, Popov VO (2009) J Mol Biol 389:846–862

    Article  PubMed  CAS  Google Scholar 

  10. Tikhonova T, Tikhonov A, Trofimov A, Polyakov K, Boyko K, Cherkashin E, Rakitina T, Sorokin D, Popov V (2012) FEBS J 279:4052–4061

    Article  PubMed  CAS  Google Scholar 

  11. Bykov D, Neese F (2011) J Biol Inorg Chem 16:417–430

    Article  PubMed  CAS  Google Scholar 

  12. Bykov D, Neese F (2012) J Biol Inorg Chem 17:741–760

    Article  PubMed  CAS  Google Scholar 

  13. Judd ET, Youngblut M, Pacheco AA, Elliott SJ (2012) Biochemistry 51:10175–10185

    Article  PubMed  CAS  Google Scholar 

  14. Almeida MG, Macieira S, Goncalves LL, Huber R, Cunha CA, Romao MJ, Costa C, Lampreia J, Moura JJG, Moura I (2003) Eur J Biochem 270:3904–3915

    Article  PubMed  CAS  Google Scholar 

  15. Marritt SJ, Kemp GL, Xiaoe L, Durrant JR, Cheesman MR, Butt JN (2008) J Am Chem Soc 130:8588–8589

    Article  PubMed  CAS  Google Scholar 

  16. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJG, Moura I, Leger C (2007) FEBS Lett 581:284–288

    Article  PubMed  CAS  Google Scholar 

  17. Todorovic S, Rodrigues ML, Matos D, Pereira IAC (2012) J Phys Chem B 116:5637–5643

    Article  CAS  Google Scholar 

  18. Kemp GL, Clarke TA, Marritt SJ, Lockwood C, Poock SR, Hemmings AM, Richardson DJ, Cheesman MR, Butt JN (2010) Biochem J 431:73–80

    Article  PubMed  CAS  Google Scholar 

  19. Leger C, Bertrand P (2008) Chem Rev 108:2379–2438

    Article  PubMed  CAS  Google Scholar 

  20. Gwyer JD, Richardson DJ, Butt JN (2005) J Am Chem Soc 127:14964–14965

    Article  PubMed  CAS  Google Scholar 

  21. van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN (2008) J Biol Chem 283:9587–9594

    Article  PubMed  Google Scholar 

  22. Tikhonova TV, Slutsky A, Antipov AN, Boyko KM, Polyakov KM, Sorokin DY, Zvyagilskaya RA, Popov VO (2006) Biochim Biophys Acta 1764:715–723

    Article  PubMed  CAS  Google Scholar 

  23. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  PubMed  CAS  Google Scholar 

  24. Butt WD, Keilin D (1962) Proc R Soc Lond B 156:429–458

    Article  PubMed  CAS  Google Scholar 

  25. Vincent KA, Tilley GJ, Quammie NC, Streeter I, Burgess BK, Cheesman MR, Armstrong FA (2003) Chem Commun 2590–2591

  26. Marritt SJ, McMillan DGG, Shi L, Fredrickson JK, Zachara J, Richardson DJ, Jeuken LJC, Butt JN (2012) Biochem Soc Trans 40:1217–1221

    Article  PubMed  CAS  Google Scholar 

  27. Cheesman MR, Watmough NJ, Gennis RB, Greenwood C, Thomson AJ (1994) Eur J Biochem 219:595–602

    Article  PubMed  CAS  Google Scholar 

  28. Thomson AJ, Cheesman MR, George SJ (1993) Methods Enzymol 226:199–232

    Article  PubMed  CAS  Google Scholar 

  29. Gadsby PMA, Thomson AJ (1990) J Am Chem Soc 112:5003–5011

    Article  CAS  Google Scholar 

  30. Cheesman MR, Greenwood C, Thomson AJ (1991) Adv Inorg Chem 36:201–255

    Article  CAS  Google Scholar 

  31. Astuti Y, Topoglidis E, Briscoe PB, Fantuzzi A, Gilardi G, Durrant JR (2004) J Am Chem Soc 126:8001–8009

    Article  PubMed  CAS  Google Scholar 

  32. Astuti Y, Topoglidis E, Gilardi G, Durrant JR (2004) Bioelectrochemistry 63:55–59

    Article  PubMed  CAS  Google Scholar 

  33. Marritt SJ, Lowe TG, Bye J, McMillan DGG, Shi L, Fredrickson J, Zachara J, Richardson DJ, Cheesman MR, Jeuken LJC, Butt JN (2012) Biochem J 444:465–474

    Article  PubMed  CAS  Google Scholar 

  34. Burlat B, Gwyer JD, Poock S, Clarke T, Cole JA, Hemmings AM, Cheesman MR, Butt JN, Richardson DJ (2005) Biochem Soc Trans 33:137–140

    Article  PubMed  CAS  Google Scholar 

  35. McMillan DGG, Marritt SJ, Kemp GL, Gordon-Brown P, Butt JN, Jeuken LJC (2013) Electrochim Acta. doi:10.1016/j.electacta.2013.01.153

  36. Gwyer JD, Angove HC, Richardson DJ, Butt JN (2004) Bioelectrochemistry 63:43–47

    Article  PubMed  CAS  Google Scholar 

  37. Page CC, Moser CC, Chen XX, Dutton PL (1999) Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  39. Fourmond V, Burlat B, Dementin S, Arnoux P, Sabaty M, Boiry S, Guigliarelli B, Bertrand P, Pignol D, Leger C (2008) J Phys Chem B 112:15478–15486

    Article  PubMed  CAS  Google Scholar 

  40. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737–11745

    Article  PubMed  CAS  Google Scholar 

  41. Lukat P, Rudolf M, Stach P, Messerschmidt A, Kroneck PMH, Simon J, Einsle O (2008) Biochemistry 47:2080–2086

    Article  PubMed  CAS  Google Scholar 

  42. Lu W, Schwarzer NJ, Du J, Gerbig-Smentek E, Andrade SLA, Einsle O (2012) Proc Nat Acad Sci USA 109:18395–18400

    Article  PubMed  CAS  Google Scholar 

  43. Oganesyan VS, Sharonov YA (1997) Spectrochim Acta A 53:433–449

    Article  Google Scholar 

  44. McMaster J, Oganesyan VS (2010) Curr Opin Struct Biol 20:615–622

    Article  PubMed  CAS  Google Scholar 

  45. Gates AJ, Kemp GL, To CY, Mann J, Marritt SJ, Mayes AG, Richardson DJ, Butt JN (2011) Phys Chem Chem Phys 13:7720–7731

    Article  PubMed  CAS  Google Scholar 

  46. Sorokin DY, Antipov AN, Kuenen JG (2003) Arch Microbiol 180:127–133

    Article  PubMed  CAS  Google Scholar 

  47. Wijma HJ, Jeuken LJC, Verbeet MP, Armstrong FA, Canters GW (2007) J Am Chem Soc 129:8557–8565

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to James Durrant and Li Xiaoe (Imperial College London) for providing the SnO2 electrodes used in this work and to the reviewers for their insights into the interpretation of the data presented. The work was funded by the UK Biotechnology and Biosciences Research Council through grants B15211, C007808, B18695, G024758, and G009228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julea N. Butt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, RM.A.S., Marritt, S.J., Gwyer, J.D. et al. Contrasting catalytic profiles of multiheme nitrite reductases containing CxxCK heme-binding motifs. J Biol Inorg Chem 18, 655–667 (2013). https://doi.org/10.1007/s00775-013-1011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1011-7

Keywords

Navigation