Skip to main content
Log in

4-Hydroxyphenylacetate decarboxylase activating enzyme catalyses a classical S-adenosylmethionine reductive cleavage reaction

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

4-Hydroxyphenylacetate decarboxylase (4Hpad) is an Fe/S cluster containing glycyl radical enzyme (GRE), which catalyses the last step of tyrosine fermentation in clostridia, generating the bacteriostatic p-cresol. The respective activating enzyme (4Hpad-AE) displays two cysteine-rich motifs in addition to the classical S-adenosylmethionine (SAM) binding cluster (RS cluster) motif. These additional motifs are also present in other glycyl radical activating enzymes (GR-AE) and it has been postulated that these orthologues may use an alternative SAM homolytic cleavage mechanism, generating a putative 3-amino-3-carboxypropyl radical and 5′-deoxy-5′-(methylthio)adenosine but not a 5′-deoxyadenosyl radical and methionine. 4Hpad-AE produced from a codon-optimized synthetic gene binds a maximum of two [4Fe–4S]2+/+ clusters as revealed by EPR and Mössbauer spectroscopy. The enzyme only catalyses the turnover of SAM under reducing conditions, and the reaction products were identified as 5′-deoxyadenosine (quenched form of 5′-deoxyadenosyl radical) and methionine. We demonstrate that the 5′-deoxyadenosyl radical is the activating agent for 4Hpad through p-cresol formation and correlation between the production of 5′-deoxyadenosine and the generation of glycyl radical in 4Hpad. Therefore, we conclude that 4Hpad-AE catalyses a classical SAM-dependent glycyl radical formation as reported for GR-AE without auxiliary clusters. Our observation casts doubt on the suggestion that GR-AE containing auxiliary clusters catalyse the alternative cleavage reaction detected for glycerol dehydratase activating enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4Hpad:

4-Hydroxyphenylacetate decarboxylase

4Hpad-AE:

4-Hydroxyphenylacetate decarboxylase activating enzyme

4Hpad-AE*:

4-Hydroxyphenylacetate decarboxylase activating enzyme treated with Fe/S cluster proteins (12.0 ± 0.3 mol Fe per mole of protein)

Gdh-AE:

Glycerol dehydratase activating enzyme

GR-AE:

Glycyl radical activating enzyme

GRE:

Glycyl radical enzyme

HPLC:

High-performance liquid chromatography

ISC:

Fe/S cluster

ITC:

Isothermal titration calorimetry

Nrd-AE:

Glycyl radical activating enzyme for class III ribonucleotide reductase

Pfl-AE:

Glycyl radical activating enzyme for pyruvate formate lyase

PITC:

Phenylisothiocyanate

RS cluster:

S-Adenosylmethionine-binding [4Fe–4S]2+/1+ cluster

SAM:

S-Adenosylmethionine

TLC:

Thin-layer chromatography

References

  1. Frey PA, Hegerman AD, Reed GH (2006) Chem Rev 106:3302–3316

    Article  PubMed  CAS  Google Scholar 

  2. Buckel W (2009) Angew Chem Int Ed 48:6779–6787

    Article  CAS  Google Scholar 

  3. Booker SJ (ed) (2012) Biochim Biophys Acta 1824:1151–1306

    Google Scholar 

  4. Kampmeier JA (2010) Biochemistry 49:10770–10772

    Article  PubMed  CAS  Google Scholar 

  5. Broderick JB (2010) Nature 465:877–878

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Zhu X, Torelli AT, Lee M, Dzikovski B, Koralewski RM, Wang E, Freed J, Krebs C, Ealick SE, Lin H (2010) Nature 465:891–896

    Article  PubMed  CAS  Google Scholar 

  7. Demick JM, Lanzilotta WN (2011) Biochemistry 50:440–442

    Article  PubMed  CAS  Google Scholar 

  8. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Nucleic Acids Res 29:1097–1106

    Article  PubMed  CAS  Google Scholar 

  9. Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH (2002) J Am Chem Soc 124:912–913

    Article  PubMed  CAS  Google Scholar 

  10. Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, Hoffman BM, Broderick JB (2005) Inorg Chem 44:727–741

    Article  PubMed  CAS  Google Scholar 

  11. Frey PA, Hegeman AD, Ruzicka FJ (2008) Crit Rev Biochem Mol Biol 43:63–88

    Article  PubMed  CAS  Google Scholar 

  12. Eklund H, Fontecave M (1999) Structure 7:257–262

    Article  Google Scholar 

  13. Buckel W, Zhang J, Friedrich P, Parthasarathy A, Li H, Djurdjevic I, Dobbek H, Martins BM (2012) Biochim Biophys Acta 1824:1278–1290

    Article  PubMed  CAS  Google Scholar 

  14. Yu L, Blaser M, Andrei PI, Pierik AJ, Selmer T (2006) Biochemistry 45:9584–9592

    Article  PubMed  CAS  Google Scholar 

  15. Martins BM, Blaser M, Feliks M, Ullmann GM, Buckel W, Selmer T (2011) J Am Chem Soc 133:14666–14674

    Article  PubMed  CAS  Google Scholar 

  16. Dawson LF, Stabler RA, Wren BW (2008) J Med Microbiol 57:745–749

    Article  PubMed  Google Scholar 

  17. Smith EA, Macfarlane GT (1997) Microb Ecol 33:180–188

    Article  PubMed  CAS  Google Scholar 

  18. Selmer T, Pierik AJ, Heider J (2005) Biol Chem 386:981–988

    Article  PubMed  CAS  Google Scholar 

  19. Li L, Patterson DP, Fox CC, Lin B, Coshigano PW, Marsh ENG (2009) Biochemistry 48:1284–1292

    Article  PubMed  CAS  Google Scholar 

  20. Hilberg M, Pierik AJ, Bill E, Friedrich T, Lippert ML, Heider J (2012) J Biol Inorg Chem 17:49–56

    Article  PubMed  CAS  Google Scholar 

  21. Jarling R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Golding BT, Wilkes W (2012) Angew Chem Int Ed 51:1334–1338

    Article  CAS  Google Scholar 

  22. Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Proc Natl Acad Sci USA 81:1332–1335

    Article  PubMed  CAS  Google Scholar 

  23. Gambarelli S, Luttringer F, Padovani D, Mulliez E, Fontecave M (2005) Chem Biochem 6:1960–1962

    CAS  Google Scholar 

  24. Lanz ND, Booker SJ (2012) Biochim Biophys Acta 1824:1196–1212

    Article  PubMed  CAS  Google Scholar 

  25. Sharp PM, Li W-H (1987) Nucleic Acids Res 15:1281–1295

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura M, Saeki K, Takahashi Y (1999) J Biochem 126:10–18

    Article  PubMed  CAS  Google Scholar 

  27. Fish WW (1988) Methods Enzymol 158:357–364

    Article  PubMed  CAS  Google Scholar 

  28. Sweeney WV, Rabinowitz JC (1980) Annu Rev Biochem 49:139–161

    Article  PubMed  CAS  Google Scholar 

  29. Gütlich P, Bill E, Trautwein AX (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin

    Book  Google Scholar 

  30. Hui AK, Armstrong BH, Wray AA (1978) J Quant Spectrosc Radiat Transf 19:509–516

    Article  Google Scholar 

  31. Schreier F (2011) J Quant Spectrosc Radiat Transf 112:1010–1025

    Article  CAS  Google Scholar 

  32. Dimova N (2003) C R Acad Bulg Sci 56:75–78

    CAS  Google Scholar 

  33. Ollagnier S, Mulliez E, Schmidt PP, Eliasson R, Gaillard J, Deronzier C, Bergman T, Graslund A, Reichard P, Fontecave M (1997) J Biol Chem 272:24216–24223

    Article  PubMed  CAS  Google Scholar 

  34. Wong KK, Murray BW, Lewisch SA, Baxter MK, Ridky TW, Ulissidemario L, Kozarich JW (1993) Biochemistry 32:14102–14110

    Article  PubMed  CAS  Google Scholar 

  35. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Nat Chem Biol 5:593–599

    Article  PubMed  CAS  Google Scholar 

  36. Duschene KS, Veneziano SE, Silver SC, Broderick JB (2009) Curr Opin Chem Biol 13:74–83

    Article  PubMed  CAS  Google Scholar 

  37. Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, Broderick JB, Solomon EI (2011) J Am Chem Soc 133:18656–18662

    Article  PubMed  CAS  Google Scholar 

  38. Jarrett JT (2003) Curr Opin Chem Biol 7:174–182

    Article  PubMed  CAS  Google Scholar 

  39. Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Proc Natl Acad Sci USA 105:16137–16141

    Article  PubMed  CAS  Google Scholar 

  40. Hinckley GT, Frey PA (2006) Biochemistry 45:6996

    Google Scholar 

  41. Sauter M, Sawers RG (1990) Mol Microbiol 4:355–363

    Article  PubMed  CAS  Google Scholar 

  42. Yang J, Naik SG, Ortillo DO, Garcia-Serres R, Li M, Broderick WE, Huynh BH, Broderick JB (2009) Biochemistry 48:9234–9241

    Article  PubMed  CAS  Google Scholar 

  43. Thauer RK, Jungermann K, Decker K (1977) Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  44. Hoffman JL (1986) Biochemistry 25:4444–4449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (grants MA 3348/2-1 and MA 3348/2-2) supported this work. Silke Steinborn and Rainer Dietrich (Strukturbiologie/Biochemie group) are acknowledged for excellent technical assistance. We thank Angelica Woyda (Analytische Chemie und Umweltchemie, Humboldt-Universität zu Berlin) for collecting electrospray ionization mass spectrometry data, Bern Miniert (MPI-CEC) for recording the Mössbauer spectra and Tobias Werther for help in the analysis of the ITC experiments. We are grateful to Thorsten Selmer (Fachhochschule Aachen, Germany) for the 4Hpad clone and all members of the Strukturbiologie/Biochemie group for helpful discussions. We also acknowledge the reviewers for valuable suggestions and Wolfgang Buckel (MPI für Terrestrische Mikrobiologie, Marburg, Germany) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta M. Martins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvaraj, B., Pierik, A.J., Bill, E. et al. 4-Hydroxyphenylacetate decarboxylase activating enzyme catalyses a classical S-adenosylmethionine reductive cleavage reaction. J Biol Inorg Chem 18, 633–643 (2013). https://doi.org/10.1007/s00775-013-1008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1008-2

Keywords

Navigation