Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals

  • Iria Barcia-Sanjurjo
  • Marta Vázquez-Cedeira
  • Ramiro Barcia
  • Pedro A. LazoEmail author
Original Paper


The human vaccinia-related kinase (VRK) proteins VRK1 and VRK2 regulate different processes, such as the cell cycle, DNA damage response, and signaling by mitogen-activated protein kinases in response to growth factors or cellular stress. Alterations in expression levels of these Ser–Thr kinases are associated with cancer and neurodegenerative diseases. These functions suggest that they might also be targets of toxic metals, and thus contribute to the pathogenic effects associated with metal intoxication. VRK1 is inhibited by cadmium, copper, and mercury, and VRK2 is more sensitive to cadmium and much less sensitive to copper and mercury. Both kinases are insensitive to lead and cobalt. VRK1 is in general more sensitive than VRK2 in the low micromolar range. This inhibitory effect induced by these metals was detected in an autophosphorylation assay, as well as in phosphorylation assays using p53 and histone H3 as substrates. The accumulation of these three metals in cells can contribute, by inhibition of VRKs, to their toxic pathogenic effects, particularly their neurological manifestations. In this context copper has not generally been associated with any intoxication syndrome, except Wilson’s syndrome, but it might be implicated in some alterations with which it has not yet been associated.


VRK1 VRK2 B1R Kinase inhibition Phosphorylation 



Mitogen-activated protein kinase


Vaccinia-related kinase



I.B.-S. and M.V.-C. have fellowships from Universidad de Santiago and JAE/CSIC/Fondo Social Europeo respectively. This work was funded by grants from Ministerio de Educación, Ciencia e Innovación (SAF2010-14935), Junta de Castilla y León (CSI-006A11-2), and Kutxa-Fundación INBIOMED to P.A.L, and from Xunta de Galicia to R. B.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

775_2013_992_MOESM1_ESM.pdf (310 kb)
Supplementary material 1 (PDF 310 kb)


  1. 1.
    Hu H (2012) Heavy metal poisoning. In: Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J (eds) Harrison’s principles of internal medicine. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  3. 3.
    Lopez-Borges S, Lazo PA (2000) The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 19:3656–3664PubMedCrossRefGoogle Scholar
  4. 4.
    Nichols RJ, Traktman P (2004) Characterization of three paralogous members of the mammalian vaccinia related kinase family. J Biol Chem 279:7934–7946PubMedCrossRefGoogle Scholar
  5. 5.
    Blanco S, Klimcakova L, Vega FM, Lazo PA (2006) The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 273:2487–2504PubMedCrossRefGoogle Scholar
  6. 6.
    Nezu J, Oku A, Jones MH, Shimane M (1997) Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics 45:327–331PubMedCrossRefGoogle Scholar
  7. 7.
    Vega FM, Gonzalo P, Gaspar ML, Lazo PA (2003) Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett 544:176–180PubMedCrossRefGoogle Scholar
  8. 8.
    Santos CR, Rodriguez-Pinilla M, Vega FM et al (2006) VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res 4:177–185PubMedCrossRefGoogle Scholar
  9. 9.
    Valbuena A, Lopez-Sanchez I, Lazo PA (2008) Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE 3:e1642PubMedCrossRefGoogle Scholar
  10. 10.
    Sevilla A, Santos CR, Barcia R et al (2004) c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 23:8950–8958PubMedCrossRefGoogle Scholar
  11. 11.
    Sevilla A, Santos CR, Vega FM, Lazo PA (2004) Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem 279:27458–27465PubMedCrossRefGoogle Scholar
  12. 12.
    Kang TH, Park DY, Kim W, Kim KT (2008) VRK1 phosphorylates CREB and mediates CCND1 expression. J Cell Sci 121:3035–3041PubMedCrossRefGoogle Scholar
  13. 13.
    Kang TH, Park DY, Choi YH et al (2007) Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol 27:8533–8546PubMedCrossRefGoogle Scholar
  14. 14.
    Sanz-Garcia M, Lopez-Sanchez I, Lazo PA (2008) Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics 7:2199–2214PubMedCrossRefGoogle Scholar
  15. 15.
    Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953PubMedCrossRefGoogle Scholar
  16. 16.
    Teufel DP, Bycroft M, Fersht AR (2009) Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28:2112–2118PubMedCrossRefGoogle Scholar
  17. 17.
    Meek DW, Anderson CW (2009) Posttranslational Modification of p53: Cooperative Integrators of Function. Cold Spring Harb Perspect Biol 1:a000950PubMedCrossRefGoogle Scholar
  18. 18.
    Valbuena A, Sanz-Garcia M, Lopez-Sanchez I et al (2011) Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 23:1267–1272PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Sanchez I, Sanz-Garcia M, Lazo PA (2009) Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol 29:1189–1201PubMedCrossRefGoogle Scholar
  20. 20.
    Sanz-Garcia M, Monsalve DM, Sevilla A, Lazo PA (2012) Vaccinia-related Kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem 287:23757–23768PubMedCrossRefGoogle Scholar
  21. 21.
    Renbaum P, Kellerman E, Jaron R et al (2009) Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet 85:281–289PubMedCrossRefGoogle Scholar
  22. 22.
    Nichols RJ, Wiebe MS, Traktman P (2006) The vaccinia-related kinases phosphorylate the N’ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell 17:2451–2464PubMedCrossRefGoogle Scholar
  23. 23.
    Gorjanacz M, Klerkx EP, Galy V et al (2008) Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J 26:132–143CrossRefGoogle Scholar
  24. 24.
    Montes de Oca R, Shoemaker CJ, Gucek M et al (2009) Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS ONE 4:e7050PubMedCrossRefGoogle Scholar
  25. 25.
    Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638PubMedCrossRefGoogle Scholar
  26. 26.
    Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegenerative disease. Cell 130:991–1004PubMedCrossRefGoogle Scholar
  27. 27.
    Blanco S, Santos C, Lazo PA (2007) Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 27:7273–7283PubMedCrossRefGoogle Scholar
  28. 28.
    Blanco S, Sanz-Garcia M, Santos CR, Lazo PA (2008) Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS ONE 3:e1660PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez IF, Blanco S, Lozano J, Lazo PA (2010) VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol 30:4687–4697PubMedCrossRefGoogle Scholar
  30. 30.
    Fernandez IF, Perez-Rivas LG, Blanco S et al (2012) VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci 69:3881–3893PubMedCrossRefGoogle Scholar
  31. 31.
    Steinberg S, de Jong S, Andreassen OA et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20:4076–4081PubMedCrossRefGoogle Scholar
  32. 32.
    Vazquez-Cedeira M, Lazo PA (2012) Human VRK2 (Vaccinia-related Kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 287:42739–42750PubMedCrossRefGoogle Scholar
  33. 33.
    Shin J, Chakraborty G, Bharatham N et al (2011) NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem 286:22131–22138PubMedCrossRefGoogle Scholar
  34. 34.
    Scheeff ED, Eswaran J, Bunkoczi G et al (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138PubMedCrossRefGoogle Scholar
  35. 35.
    Fedorov O, Marsden B, Pogacic V et al (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104:20523–20528PubMedCrossRefGoogle Scholar
  36. 36.
    Fedorov O, Sundstrom M, Marsden B, Knapp S (2007) Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discov Today 12:365–372PubMedCrossRefGoogle Scholar
  37. 37.
    Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M et al (2011) Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS ONE 6:e23235PubMedCrossRefGoogle Scholar
  38. 38.
    Santos CR, Vega FM, Blanco S et al (2004) The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology 328:254–265PubMedCrossRefGoogle Scholar
  39. 39.
    Valbuena A, Lopez-Sanchez I, Vega FM et al (2007) Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Arch Biochem Biophys 465:219–226PubMedCrossRefGoogle Scholar
  40. 40.
    Barcia R, Lopez-Borges S, Vega FM, Lazo PA (2002) Kinetic properties of p53 phosphorylation by the human vaccinia-related kinase 1. Arch Biochem Biophys 399:1–5PubMedCrossRefGoogle Scholar
  41. 41.
    Monsalve DM, Merced T, Fernandez IF et al (2013) Cell Death Dis 4:e513. doi: 10.1038/cddis.2013.40 PubMedCrossRefGoogle Scholar
  42. 42.
    Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223:234–240PubMedCrossRefGoogle Scholar
  43. 43.
    Banham AH, Leader DP, Smith GL (1993) Phosphorylation of ribosomal proteins by the vaccinia virus B1R protein kinase. FEBS Lett 321:27–31PubMedCrossRefGoogle Scholar
  44. 44.
    Speizer LA, Watson MJ, Kanter JR, Brunton LL (1989) Inhibition of phorbol ester binding and protein kinase C activity by heavy metals. J Biol Chem 264:5581–5585PubMedGoogle Scholar
  45. 45.
    Koga M, Zwaal R, Guan KL et al (2000) A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J 19:5148–5156PubMedCrossRefGoogle Scholar
  46. 46.
    Kim DH, Liberati NT, Mizuno T et al (2004) Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA 101:10990–10994PubMedCrossRefGoogle Scholar
  47. 47.
    Wiebe MS, Nichols RJ, Molitor TP et al (2010) Mice deficient in the serine/threonine protein kinase VRK1 are infertile due to a progressive loss of spermatogonia. Biol Reprod 82:182–193PubMedCrossRefGoogle Scholar
  48. 48.
    Schober CS, Aydiner F, Booth CJ et al (2011) The kinase VRK1 is required for normal meiotic progression in mammalian oogenesis. Mech Dev 128:178–190PubMedCrossRefGoogle Scholar
  49. 49.
    Choi YH, Park CH, Kim W et al (2010) Vaccinia-related kinase 1 is required for the maintenance of undifferentiated spermatogonia in mouse male germ cells. PLoS ONE 5:e15254PubMedCrossRefGoogle Scholar
  50. 50.
    Sanz-Garcia M, Vazquez-Cedeira M, Kellerman E et al (2011) Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 75:548–560PubMedCrossRefGoogle Scholar
  51. 51.
    Walker MP, Tian L, Matera AG (2009) Reduced viability, fertility and fecundity in mice lacking the cajal body marker protein, coilin. PLoS ONE 4:e6171PubMedCrossRefGoogle Scholar
  52. 52.
    Brewer GJ (2008) Wilson′s disease. In: Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (eds) Harrison’s principles of internal medicine. McGraw-Hill, New York, pp 2449–2452Google Scholar
  53. 53.
    Sharma HS, Muresanu DF, Patnaik R et al (2011) Superior neuroprotective effects of cerebrolysin in heat stroke following chronic intoxication of Cu or Ag engineered nanoparticles. A comparative study with other neuroprotective agents using biochemical and morphological approaches in the rat. J Nanosci Nanotechnol 11:7549–7569PubMedCrossRefGoogle Scholar
  54. 54.
    O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  55. 55.
    Xu F, Farkas S, Kortbeek S et al (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-aspartate receptors. Mol Brain 5:30PubMedCrossRefGoogle Scholar
  56. 56.
    Korogi Y, Takahashi M, Shinzato J, Okajima T (1994) MR findings in seven patients with organic mercury poisoning (Minamata disease). Am J Neuroradiol 15:1575–1578PubMedGoogle Scholar
  57. 57.
    Vega FM, Sevilla A, Lazo PA (2004) p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol 24:10366–10380PubMedCrossRefGoogle Scholar
  58. 58.
    Valbuena A, Blanco S, Vega FM, Lazo PA (2008) The C/H3 domain of p300 is required to protect VRK1 and VRK2 from their downregulation induced by p53. PLoS ONE 3:e2649PubMedCrossRefGoogle Scholar
  59. 59.
    Valbuena A, Castro-Obregon S, Lazo PA (2011) Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PLoS ONE 6:e17320PubMedCrossRefGoogle Scholar
  60. 60.
    Valbuena A, Vega FM, Blanco S, Lazo PA (2006) p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 26:4782–4793PubMedCrossRefGoogle Scholar
  61. 61.
    Lee CW, Ferreon JC, Ferreon AC et al (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci USA 107:19290–19295PubMedCrossRefGoogle Scholar
  62. 62.
    Kim W, Chakraborty G, Kim S et al (2012) Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem 287:5278–5289PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • Iria Barcia-Sanjurjo
    • 1
  • Marta Vázquez-Cedeira
    • 2
    • 3
  • Ramiro Barcia
    • 1
  • Pedro A. Lazo
    • 2
    • 3
    • 4
    Email author
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del CáncerCSIC-Universidad de SalamancaSalamancaSpain
  3. 3.Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
  4. 4.Centro de Investigación del CáncerCSIC-Universidad de SalamancaSalamancaSpain

Personalised recommendations