Skip to main content

Advertisement

Log in

Mechanistic insights into the superoxide–cytochrome c reaction by lysine surface scanning

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This study summarizes results which have been obtained by a mutational study of human cytochrome c. The protein can be used as a recognition element in analytical assays and biosensors for superoxide radicals since ferricytochrome c reacts with superoxide to form ferrocytochrome c and oxygen. Here lysine mutagenesis of the distal surface (i.e., of exposed residues around the Met80 axial ligand) of human cytochrome c was pursued to evaluate the effect of the surface charges on the reaction rate with the superoxide anion radical and on the redox properties of the heme protein. The latter feature is particularly relevant when the protein is immobilized on a negatively charged self-assembled monolayer on an electrode to be used as a biosensor. The observed effects of the mutations are rationalized through structural investigations based on solution NMR spectroscopy and computational analysis of the surface electrostatics. The results suggest the presence of a specific path that guides superoxide toward an efficient reaction site. Localized positive charges at the rim of the entry channel are effective in increasing the reaction rate, whereas diffused positive charges or charges far from this area are not effective or are even detrimental, resulting in a misguided approach of the anion to the protein surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HSQC:

Heteronuclear single quantum coherence

MU:

Mercaptoundecanol

MUA:

Mercaptoundecanoic acid

XOD:

Xanthine oxidase

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Internat J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  2. Rosen GM, Britigan BE, Halpern HJ, Pou S (1999) Free radicals: biology and detection by spin trapping. Oxford University Press, New York

  3. Balaban RS, Nemoto S, Finkel T (2005) Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  4. Culotta VC, Yang M, O’Halloran TV (2006) Biochem Biophys Acta 1763:747–758

    Article  PubMed  CAS  Google Scholar 

  5. Faraci FM, Didion SP (2004) Arterioscler Thromb Vasc Biol 24:1367–1373

    Article  PubMed  CAS  Google Scholar 

  6. Valentine JS, Doucette PA, Potter SZ (2005) Annu Rev Biochem 74:563–593

    Article  PubMed  CAS  Google Scholar 

  7. Cave AC, Brewer AC, Narayanppanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) Antioxid Redox Signal 8:691–728

    Article  PubMed  CAS  Google Scholar 

  8. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) J Chromatogr B 827:65–75

    Article  CAS  Google Scholar 

  9. Venardos KM, Perkins A, Headrick K, Kaye DM (2007) Curr Med Chem 14:1539–1549

    Article  PubMed  CAS  Google Scholar 

  10. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Curr Med Chem 15:404–414

    Article  PubMed  CAS  Google Scholar 

  11. Li JM, Shah AM (2004) Am J Physiol Regul Integr Comp Physiol 287:1014–1030

    Article  Google Scholar 

  12. Butler J, Jayson GG, Swallow AJ (1975) Biochim Biophys Acta 408:215–222

    Article  PubMed  CAS  Google Scholar 

  13. McCord JM, Fridovich I (1969) J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  14. Jr Martin, Joseph P (1990) Methods Enzymol 186:220–227

    Article  Google Scholar 

  15. Beissenhirtz MK, Scheller FW, Lisdat F (2004) Anal Chem 76:4665–4671

    Article  PubMed  CAS  Google Scholar 

  16. Gobi KV, Mizutani F (2000) J Electroanal Chem 484:172–181

    Article  CAS  Google Scholar 

  17. Chang SC, Pereira-Rodrigues N, Henderson JR, Cole A, Bedioui F, McNeil CJ (2005) Biosens Bioelectron 21:917–922

    Article  PubMed  CAS  Google Scholar 

  18. Manning P, Cookson MR, Eggett CJ, Tolias CM, Read SJ, Hunter AJ, Tsatmail M, Thody AJ, Hillhouse EW, Shaw PJ, McNeil CJ (2000) Analusis 28:493–505

    Article  CAS  Google Scholar 

  19. Büttemeyer R, Philipp AW, Schlenzka L, Mall JW, Beissenhirtz M, Lisdat F (2003) Transpl Proc 35:3116–3120

    Article  Google Scholar 

  20. Ohsaka T, Tian Y, Shioda M, Kasahara S (2002) Chem Commun 990–991

  21. Beissenhirtz MK, Sheller FW, Viezzoli MS, Lisdat F (2006) Anal Chem 78:928–935

    Article  PubMed  CAS  Google Scholar 

  22. Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F (2009) Anal Chem 81:2976–2984

    Article  PubMed  CAS  Google Scholar 

  23. Banci L, Bertini I, Dikiy A, Kastrau DHW, Luchinat C, Sompornpisut P (1995) Biochemistry 34:206–219

    Article  PubMed  CAS  Google Scholar 

  24. Bren KL, Gray HB, Banci L, Bertini I, Turano P (1995) J Am Chem Soc 117:8067–8073

    Article  CAS  Google Scholar 

  25. Banci L, Bertini I, Spyroulias GA, Turano P (1998) Eur J Inorg Chem 1998:583–591

    Article  Google Scholar 

  26. Sakamoto K, Kamiya M, Uchida T, Kawano K, Ishimori K (2010) Biochem Biophys Res Commun 398:231–236

    Article  PubMed  CAS  Google Scholar 

  27. Barker PD, Bertini I, Del Conte R, Ferguson SJ, Hajieva P, Tomlinson EJ, Turano P, Viezzoli MS (2001) Eur J Biochem 268:4468–4476

    Article  PubMed  CAS  Google Scholar 

  28. Fetrow JS, Baxter SM (1999) Biochemistry 38:4480–4492

    Article  PubMed  CAS  Google Scholar 

  29. Baxter SM, Fetrow JS (1999) Biochemistry 38:4493–4503

    Article  PubMed  CAS  Google Scholar 

  30. Banci L, Gori Savellini G, Turano P (1997) Eur J Biochem 249:716–723

    Article  PubMed  CAS  Google Scholar 

  31. Bortolotti CA, Amadei A, Aschi M, Borsari M, Corni S, Sola M, Daidone I (2012) J Am Chem Soc 134:13670–13678

    Article  PubMed  CAS  Google Scholar 

  32. Bertini I, Chevance S, Del Conte R, Lalli D, Turano P (2011) Plos ONE 6:18329

  33. Ge B, Lisdat F (2002) Anal Chim Acta 454:53–64

    Article  CAS  Google Scholar 

  34. Behar D, Czapski G, Rabani J, Dorfman L, Schwarz H (1970) J Phys Chem 74:3209–3213

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York

  36. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  37. Jeng WY, Chen CY, Chang HC, Chuang WJ (2002) J Bioenerg Biomembr 34:423–431

    Article  PubMed  CAS  Google Scholar 

  38. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister CE, Caldwell JW, Ross WS, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  39. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712–725

    Article  PubMed  CAS  Google Scholar 

  40. Giachetti A, La Penna G, Perico A, Banci L (2004) Biophys J 87:498–512

    Article  PubMed  CAS  Google Scholar 

  41. Jayaram B, Sprous D, Beveridge DL (1998) J Phys Chem B 102:9571–9576

    Article  CAS  Google Scholar 

  42. Bertini I, Case DA, Ferella L, Giachetti A, Rosato A (2011) Bioinformatics 27:2384–2390

    Article  PubMed  CAS  Google Scholar 

  43. Baker NA, Sept D, Joseph S, Holst MJ, Mc Cammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  45. Xu J, Bowden EF (2006) J Am Chem Soc 128:6813–6822

    Article  PubMed  CAS  Google Scholar 

  46. Davis AV, O’Halloran TV (2008) Nat Chem Biol 4:148–151

    Article  PubMed  CAS  Google Scholar 

  47. Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F (2011) Langmuir 27:4202–4211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bio-NMR project (European FP7 Collaborative Project and Coordination – Support Action, contract no. 261863) for access to the NMR instrumentation. The WeNMR project (European FP7 e-Infrastructure grant, contract no. 261572, http://www.wenmr.eu), supported by the national GRID Initiatives of Belgium, France, Italy, Germany, the Netherlands (via the Dutch BiG Grid project), Portugal, Spain, the UK, South Africa, Taiwan, and the Latin America GRID infrastructure via the Gisela project is acknowledged for the use of web portals and computing and storage facilities. The work was also partially supported by the German research association DFG (project LI 706/7-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fred Lisdat or Paola Turano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material available. One-dimensional 1H and 1H-15N HSQC spectra of relevant mutants.

Supplementary material 1 (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegerich, F., Giachetti, A., Allegrozzi, M. et al. Mechanistic insights into the superoxide–cytochrome c reaction by lysine surface scanning. J Biol Inorg Chem 18, 429–440 (2013). https://doi.org/10.1007/s00775-013-0987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0987-3

Keywords

Navigation