Skip to main content
Log in

Oxidation reactivity of zinc–cysteine clusters in metallothionein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Evaluating the reactivity of the metal–thiolate clusters in metallothionein (MT) is a key step in understanding the biological functions of this protein. The effects of the metal clustering and protein environment on the thiolate reactivity with hydrogen peroxide (H2O2) were investigated by performing quantum theory calculations with chemical accuracy at two levels of complexity. At the first level, the reactivity with H2O2 of a model system ([(Zn)3(MeS)9]3−, MeS is methanethiolate) of the β domain cluster of MT was evaluated using density functional theory (DFT) with the mPW1PW91 functional. At the second level of complexity, the protein environment was included in the reactant system and the calculations were performed with the hybrid ONIOM method combining the DFT–mPW1PW91 and the semiempirical PM6 levels of theory. In these conditions, the energy barrier for the oxidation of the most reactive terminal thiolate was 21.5 kcal mol−1. This is 3 kcal mol−1 higher than that calculated for the terminal thiolate in the model system [(Zn)3(MeS)9]3− and about 7 kcal mol−1 higher than that obtained for the free thiolate. In spite of this rise of the energy barrier induced by the protein environment, the thiolate oxidation by H2O2 is confirmed as a possible way for metal release from MT. On the other hand, the results suggest that the antioxidant role of MT in the living cell cannot be as important as that of glutathione (which bears a free thiol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krężl A, Hao Q, Maret W (2007) Arch. Biochem. Biophys. 463:188–200

    Article  Google Scholar 

  2. Kang YJ (2006) Exp. Biol. Med. 231:1459–1467

    CAS  Google Scholar 

  3. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Cell. Mol. Life Sci. 59:627–647

    Article  PubMed  CAS  Google Scholar 

  4. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) J. Mol. Biol. 221:1269–1293

    PubMed  CAS  Google Scholar 

  5. Maret W, Valee BL (1998) Proc. Natl. Acad. Sci. U.S.A. 95:3478–3482

    Article  PubMed  CAS  Google Scholar 

  6. Zhu J, Meeusen J, Krezoski S, Petering DH (2010) Chem. Res. Toxicol. 23:422–431

    Article  PubMed  CAS  Google Scholar 

  7. Hu HY, Cheng HQ, Li Q, Zou YS, Xu GJ (1999) J. Prot. Chem. 18:665–670

    Article  CAS  Google Scholar 

  8. Palmiter RD (1998) Proc. Natl. Acad. Sci. U.S.A. 95:8428–8430

    Article  PubMed  CAS  Google Scholar 

  9. Carpenè E, Andreani G, Isani G.: J. Trace Elem. Med. Biol. 21(Suppl 1):35–39 (2007)

    Google Scholar 

  10. Maret W (2004) Biochemistry 43:3301–3309

    Article  PubMed  CAS  Google Scholar 

  11. Maret W (1994) Proc. Natl. Acad. Sci. U.S.A. 91:237–241

    Article  PubMed  CAS  Google Scholar 

  12. You HJ, Lee KJ, Jeong HG (2002) FEBS Lett. 521:175–179

    Article  PubMed  CAS  Google Scholar 

  13. Quesada AR, Byrnes RW, Krezoski SO, Petering DH (1996) Arch. Biochem. Biophys. 334:241–250

    Article  PubMed  CAS  Google Scholar 

  14. Suntres ZE, Lui EMK (2006) Chem. Biol. Interact. 162:11–23

    Article  PubMed  CAS  Google Scholar 

  15. Jiménez I, Gotteland M, Zarzuelo A, Uauy R, Speisky H (1997) Toxicology 120:37–46

    Article  PubMed  Google Scholar 

  16. Kassim R, Ramseyer C, Enescu M (2011) Inorg. Chem. 50:5407–5416

    Article  PubMed  CAS  Google Scholar 

  17. Adamo C, Barone V (1998) J. Comput. Chem. 19:418–429

    Article  CAS  Google Scholar 

  18. Warshel A, Levitt M (1976) J. Mol. Biol. 103:227–249

    Article  PubMed  CAS  Google Scholar 

  19. Lin H, Truhlar DG (2007) Theor. Chem. Acc. 117:185–199

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu H, Yang W (2000) J. Chem. Phys. 112:3483–3492

    Article  CAS  Google Scholar 

  21. Kaukonen M, Söderhjelm P, Heimdal J, Ryde U (2008) J. Chem. Theory Comput. 4:985–1001

    Article  CAS  Google Scholar 

  22. Hu H, Lu Z, Yang W (2007) J. Chem. Theory Comput. 3:390–406

    Article  PubMed  CAS  Google Scholar 

  23. Svensson M, Humbel S, Morokuma K (1996) J. Chem. Phys. 105:3654–3661

    Article  CAS  Google Scholar 

  24. Yao L, Cukier RI, Yan H (2007) J. Phys. Chem. B. 111:4200–4210

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Sklenak S, Liu A, Felczak K, Wu Y, Li Y, Yan H (2012) Biochemistry 51:475–486

    Article  PubMed  CAS  Google Scholar 

  26. Yang W, Drueckhammer DG (2003) J. Phys. Chem. B. 107:5986–5994

    Article  CAS  Google Scholar 

  27. Slater EA, Wierzbicki A (2007) J. Phys. Chem. B. 111:4547–4552

    Article  Google Scholar 

  28. Pelmenschikow V, Siegbahn PE (2002) Inorg. Chem. 41:5659–5666

    Article  Google Scholar 

  29. Chan J, Huang Z, Merrifield ME, Salgado MT, Stillman MJ (2002) Coord. Chem. Rev. 233–234:319–339

    Article  Google Scholar 

  30. Stewart JJP (2007) J. Mol. Model. 13:1173–1213

    Article  PubMed  CAS  Google Scholar 

  31. Cossi M, Scalmani G, Rega N, Barone V (2002) J. Chem. Phys. 117:43–54

    Article  CAS  Google Scholar 

  32. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) J. Chem. Phys. 117:8694–8704

    Article  CAS  Google Scholar 

  33. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J. Mol. Struct. (Theochem) 462:1–21

    Article  Google Scholar 

  34. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2009) Gaussian 09, revision A.1. Gaussian, Wallingford

  35. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can. J. Chem. 70:612–630

    Article  CAS  Google Scholar 

  36. Cardey B, Enescu M (2005) Chem. Phys. Chem 6:1175–1180

    Article  PubMed  CAS  Google Scholar 

  37. Gonzales C, Schlegel HB (1990) J. Phys. Chem. 94:5523–5527

    Article  Google Scholar 

  38. Cardey B, Enescu M (2007) J. Phys. Chem. A 111:673–678

    Article  PubMed  CAS  Google Scholar 

  39. Sato M, Bremner I (1993) Free Radic. Biol. Med. 14:325–337

    Article  PubMed  CAS  Google Scholar 

  40. Braun W, Schultze P, Woergoetter E, Wagner G, Vasak M, Kaegi JHR, Wuthrich K (1988) J. Mol. Biol. 203:251–268

    Article  PubMed  Google Scholar 

  41. Winterbourn C, Metodiewa D (1999) Free Radic Biol. Med. 27:322–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Calculations were conducted largely with the supercomputer facility at the Mésocentre, a regional computational center at the University of Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mironel Enescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassim, R., Ramseyer, C. & Enescu, M. Oxidation reactivity of zinc–cysteine clusters in metallothionein. J Biol Inorg Chem 18, 333–342 (2013). https://doi.org/10.1007/s00775-013-0977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0977-5

Keywords

Navigation