JBIC Journal of Biological Inorganic Chemistry

, Volume 18, Issue 1, pp 145–152 | Cite as

Titanium mineralization in ferritin: a room temperature nonphotochemical preparation and biophysical characterization

  • Fairland F. Amos
  • Kathryn E. Cole
  • Rachel L. Meserole
  • Jean P. Gaffney
  • Ann M. Valentine
Original Paper

Abstract

The incremental addition of titanium(III) citrate to H-chain homopolymers of human ferritin results in the formation of 1.5–6.5-nm particles of amorphous TiO2 within the nanocage of the protein. The mineralization conditions are mild, featuring ambient temperature and no need for photochemical activation. Low ratios of titanium to protein favor intraprotein mineralization, and the products are characterized by stained and unstained transmission electron microscopy, UV–vis spectroscopy, dynamic light scattering, analytical ultracentrifugation, and metal analysis. With up to 1,000 equiv of metal, there is no change to the protein hydrodynamic radius or diffusion constant. There is, however, a systematic shift in the sedimentation coefficient, which confirms mineralization within the protein core.

Keywords

Biomineralization Biotitanification Titanium dioxide Biomimetic Analytical ultracentrifugation 

Supplementary material

775_2012_959_MOESM1_ESM.pdf (12.9 mb)
This material includes details of protein cloning and expression, unit cell parameters of common crystal forms of TiO2 and data for Fe(III) mineralization. Supplementary material 1 (PDF 13185 kb)

References

  1. 1.
    Gao YF, Koumoto K (2005) Cryst Growth Des 5:1983–2017CrossRefGoogle Scholar
  2. 2.
    Dickerson MB, Sandhage KH, Naik RR (2008) Chem Rev 108:4935–4978PubMedCrossRefGoogle Scholar
  3. 3.
    Kroger N, Sandhage KH (2010) MRS Bull 35:122–126CrossRefGoogle Scholar
  4. 4.
    Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) Biochim Biophys Acta Gen Subj 1800:834–845CrossRefGoogle Scholar
  5. 5.
    Buettner KM, Valentine AM (2012) Chem Rev 112:1863–1881PubMedCrossRefGoogle Scholar
  6. 6.
    Dick AB (1925) Trans Edinb Geol Soc 12:19–21Google Scholar
  7. 7.
    Cole KE, Valentine AM (2006) Dalton Trans 430–432Google Scholar
  8. 8.
    Allen K, Roberts S, Murray JW (1999) J Micropalaentol 18:183–191CrossRefGoogle Scholar
  9. 9.
    Makled WA, Langer MR (2010) Rev Micropaleontol 53:163–173Google Scholar
  10. 10.
    Rothe N, Gooday AJ, Pearce RB (2011) Deep Sea Res Part I Oceanogr Res Pap 58:1189–1195Google Scholar
  11. 11.
    Stokroos I, Litinetsky L, van der Want JJL, Ishay JS (2001) Nature 411:654Google Scholar
  12. 12.
    Ishay JS, Riabinin K, Kozhevnikov M, van der Want H, Stokiroos I (2003) Biomacromolecules 4:649–656PubMedCrossRefGoogle Scholar
  13. 13.
    Reboreda R, Davies MS (2006) Ecotoxicology 15:403–410PubMedCrossRefGoogle Scholar
  14. 14.
    Carroll KG, Tullis JL (1968) Nature 217:1172-1173Google Scholar
  15. 15.
    Barckhaus RH, Schmidt PF (1991) Prog Histochem Cytochem 23:332–341PubMedCrossRefGoogle Scholar
  16. 16.
    Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361–365PubMedCrossRefGoogle Scholar
  17. 17.
    Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129–1132PubMedCrossRefGoogle Scholar
  18. 18.
    Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Nature 403:289–292PubMedCrossRefGoogle Scholar
  19. 19.
    Coffman EA, Melechko AV, Allison DP, Simpson ML, Doktycz MJ (2004) Langmuir 20:8431–8436PubMedCrossRefGoogle Scholar
  20. 20.
    Kroger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Proc Natl Acad Sci USA 97:14133–14138PubMedCrossRefGoogle Scholar
  21. 21.
    Belton DJ, Patwardhan SV, Perry CC (2005) J Mater Chem 15:4629–4638CrossRefGoogle Scholar
  22. 22.
    Delak KM, Sahai N (2005) Chem Mater 17:3221–3227CrossRefGoogle Scholar
  23. 23.
    Sumerel JL, Yang WJ, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Chem Mater 15:4804–4809CrossRefGoogle Scholar
  24. 24.
    Tahir MN, Theato P, Muller WEG, Schroder HC, Borejko A, Faiss S, Janshoff A, Huth J, Tremel W (2005) Chem Commun 5533–5535Google Scholar
  25. 25.
    Sewell SL, Wright DW (2006) Chem Mater 18:3108–3113CrossRefGoogle Scholar
  26. 26.
    Cole KE, Ortiz AN, Schoonen MA, Valentine AM (2006) Chem Mater 18:4592–4599CrossRefGoogle Scholar
  27. 27.
    Cole KE, Valentine AM (2007) Biomacromolecules 8:1641–1647PubMedCrossRefGoogle Scholar
  28. 28.
    Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) J Mater Res 23:3255–3262CrossRefGoogle Scholar
  29. 29.
    Harrison PM, Arosio P (1996) Biochim Biophys Acta Bioenerg 1275:161–203CrossRefGoogle Scholar
  30. 30.
    Arosio P, Ingrassia R, Cavadini P (2009) Biochim Biophys Acta Gen Subj 1790:589–599CrossRefGoogle Scholar
  31. 31.
    Bou-Abdallah F (2010) Biochim Biophys Acta Gen Subj 1800:719–731CrossRefGoogle Scholar
  32. 32.
    Theil EC (2011) Curr Opin Chem Biol 15:304–311PubMedCrossRefGoogle Scholar
  33. 33.
    Klem MT, Mosolf J, Young M, Douglas T (2008) Inorg Chem 47:2237–2239PubMedCrossRefGoogle Scholar
  34. 34.
    Meldrum FC, Heywood BR, Mann S (1992) Science 257:522–523PubMedCrossRefGoogle Scholar
  35. 35.
    Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Nature 349:684–687CrossRefGoogle Scholar
  36. 36.
    Meldrum FC, Douglas T, Levi S, Arosio P, Mann S (1995) J Inorg Biochem 58:59–68PubMedCrossRefGoogle Scholar
  37. 37.
    Douglas T, Stark VT (2000) Inorg Chem 39:1828–1830PubMedCrossRefGoogle Scholar
  38. 38.
    Kim JW, Choi SH, Lillehei PT, Chu SH, King GC, Watt GD (2005) Chem Commun 4101–4103Google Scholar
  39. 39.
    Paradies J, Crudass J, MacKay F, Yellowlees LJ, Montgomery J, Parsons S, Oswald L, Robertson N, Sadler PJ (2006) J Inorg Biochem 100:1260–1264PubMedCrossRefGoogle Scholar
  40. 40.
    Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM (1997) J Mol Biol 268:424–448PubMedCrossRefGoogle Scholar
  41. 41.
    Levi S, Luzzago A, Cesareni G, Cozzi A, Franceschinelli F, Albertini A, Arosio P (1988) J Biol Chem 263:18086–18092PubMedGoogle Scholar
  42. 42.
    Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner MH, Arosio P (1989) Biochemistry 28:5179–5184PubMedCrossRefGoogle Scholar
  43. 43.
    May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND (2010) Biochim Biophys Acta Gen Subj 1800:858–870CrossRefGoogle Scholar
  44. 44.
    Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Inorg Chem 44:3431–3440PubMedCrossRefGoogle Scholar
  45. 45.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Biophoton Int 11: 36–42Google Scholar
  46. 46.
    Nichols PNR (1960) Analyst 85:452–453Google Scholar
  47. 47.
    Schuck P, Rossmanith P (2000) Biopolymers 54:328–341PubMedCrossRefGoogle Scholar
  48. 48.
    Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Biophys J 82:1096–1111PubMedCrossRefGoogle Scholar
  49. 49.
    Williams MA, Gregory DW, Harrison PM (1966) Biochem J 99:P10Google Scholar
  50. 50.
    Williams MA, Harrison PM (1968) Biochem J 110:265–280PubMedGoogle Scholar
  51. 51.
    Niitsu Y, Listowsky I (1973) Biochemistry 12:4690–4695PubMedCrossRefGoogle Scholar
  52. 52.
    Lee SSC, Richter GW (1976) Biochemistry 15:65–70PubMedCrossRefGoogle Scholar
  53. 53.
    Butts CA, Swift J, Kang S-g, Di Costanzo L, Christianson DW, Saven JG, Dmochowski IJ (2008) Biochemistry 47:12729–12739Google Scholar
  54. 54.
    Rothen A (1944) J Biol Chem 152:679–693Google Scholar
  55. 55.
    Yoe JH, Armstrong AR (1945) Science 102:207Google Scholar
  56. 56.
    Mann S, Bannister JV, Williams RJP (1986) J Mol Biol 188:225–232PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2012

Authors and Affiliations

  • Fairland F. Amos
    • 1
  • Kathryn E. Cole
    • 2
  • Rachel L. Meserole
    • 1
  • Jean P. Gaffney
    • 1
  • Ann M. Valentine
    • 3
  1. 1.Department of ChemistryYale UniversityNew HavenUSA
  2. 2.Department of ChemistryIthaca CollegeIthacaUSA
  3. 3.Department of ChemistryTemple UniversityPhiladelphiaUSA

Personalised recommendations