Skip to main content
Log in

Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson’s disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin–BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by 1H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin–BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin–BSA conjugates appear to be good models for the natural pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DA:

Dopamine

DAQ:

Dopaminoquinone

EDTA:

Ethylenediamine tetraacetic acid

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NM:

Neuromelanin

PD:

Parkinson’s disease

References

  1. Hirsch E, Graybiel AM, Agid YA (1988) Nature 334:345–348

    Article  PubMed  CAS  Google Scholar 

  2. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  3. Fedorow H, Tribl F, Halliday GM, Gerlach M, Riederer P, Double KL (2005) Prog Neurobiol 75:109–124

    Article  PubMed  CAS  Google Scholar 

  4. Zecca L, Costi P, Mecacci C, Ito S, Terreni M, Sonnino S (2000) J Neurochem 74:1758–1765

    Article  PubMed  CAS  Google Scholar 

  5. Ito S, Wakamatsu K (2008) Photochem Photobiol 84:582–592

    Article  PubMed  CAS  Google Scholar 

  6. Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T (1996) Swartz HM Neurosci 73:407–415

    Article  CAS  Google Scholar 

  7. Shima T, Sarna T, Swartz HM, Stroppolo A, Gerasi R, Zecca L (1997) Free Rad Biol Med 23:110–119

    Article  PubMed  CAS  Google Scholar 

  8. Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, Ito S, Fariello R, Gallorini M (2002) J Neural Transm 109:663–672

    Article  PubMed  CAS  Google Scholar 

  9. Aime S, Bergamasco B, Biglino D, Digilio G, Fasano M, Giamello E, Lopiano L (1997) Biochim Biophys Acta 1361:49–58

    Article  PubMed  CAS  Google Scholar 

  10. Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) J Neurochem 76:1766–1773

    Article  PubMed  CAS  Google Scholar 

  11. Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim BH, Riederer P, Ben-Shachar D (2003) Biochem Pharmacol 66:489–494

    Article  PubMed  CAS  Google Scholar 

  12. Fasano M, Bergamasco B, Lopiano L (2006) J Neural Transm 113:769–774

    Article  PubMed  CAS  Google Scholar 

  13. Zecca L, Casella L, Albertini A, Bellei C, Zucca F, Engelen M, Zadlo A, Szewczyk G, Zareba M, Sarna T (2008) J Neurochem 106:1866–1875

    PubMed  CAS  Google Scholar 

  14. Kropf AJ, Bunker BA, Eisner M, Moss SC, Zecca L, Stroppolo A, Crippa PR (1998) Biophys J 75:3135–3142

    Article  PubMed  CAS  Google Scholar 

  15. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  16. Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) J Neurochem 59:1168–1171

    Article  PubMed  CAS  Google Scholar 

  17. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) J Neurochem 86:1142–1148

    Article  PubMed  CAS  Google Scholar 

  18. Rao KS, Hegde ML, Anitha S, Musicco M, Zucca FA, Turro NJ, Zecca L (2006) Prog Neurobiol 78:364–373

    Article  PubMed  CAS  Google Scholar 

  19. Lindquist NG, Larsson BS, Lyden-Sokolowski A (1998) Neurosci Lett 93:1–6

    Article  Google Scholar 

  20. D’Amato RJ, Lipman ZP, Snyder SH (1986) Science 231:987–989

    Article  PubMed  Google Scholar 

  21. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Ann Neurol 24:574–576

    Article  PubMed  CAS  Google Scholar 

  22. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Ann Neurol 46:598–605

    Article  PubMed  CAS  Google Scholar 

  23. Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, Lucius R (2008) Acta Neuropath 116:47–55

    Article  PubMed  CAS  Google Scholar 

  24. Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, Faust R, Qian SY, Miller DS, Chignell CF, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong JS, Sulzer D, Zecca L (2011) Neurotox Res 19:63–72

    Article  PubMed  Google Scholar 

  25. Sulzer D (2007) Trends Neurosci 30:244–250

    Article  PubMed  CAS  Google Scholar 

  26. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DG (2005) Nat Med 11:1214–1221

    Article  PubMed  CAS  Google Scholar 

  27. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Science 294:1346–1349

    Article  PubMed  CAS  Google Scholar 

  28. Bridelli MG, Zecca L, Tampellini D (1999) FEBS Lett 457:18–22

    Article  PubMed  CAS  Google Scholar 

  29. d’Ischia M, Napolitano A, Pezzella A, Land EJ, Ramsden CA, Riley PA (2005) Adv Heterocycl Chem 89:1–63

    Article  Google Scholar 

  30. Ito S (1986) Biochim Biophys Acta 883:155–161

    Article  PubMed  CAS  Google Scholar 

  31. Aime S, Bergamasco B, Casu M, Digilio G, Fasano M, Giraudo S, Lopiano L (2000) Mov Disord 15:977–981

    Article  PubMed  CAS  Google Scholar 

  32. Hattori N, Sato S (2007) Neuropathology 27:479–483

    Article  PubMed  Google Scholar 

  33. Bou-Abdallah F, Chasteen ND (2008) J Biol Inorg Chem 13:15–24

    Article  PubMed  CAS  Google Scholar 

  34. d’Ischia M, Crescenzi O, Pezzella A, Arzillo M, Panzella L, Napolitano A, Barone V (2008) Photochem Photobiol 84:600–607

    Article  PubMed  Google Scholar 

  35. Meredith P, Sarna T (2006) Pigment Cell Res 19:572–594

    Article  PubMed  CAS  Google Scholar 

  36. Tse DCS, McCreery RL, Adams RN (1976) J Med Chem 19:37–40

    Article  PubMed  CAS  Google Scholar 

  37. Whitehead RE, Ferrer JV, Javitch JA, Justice JB (2001) J Neurochem 76:1242–1251

    Article  PubMed  CAS  Google Scholar 

  38. Nicolis S, Zucchelli M, Monzani E, Casella L (2008) Chem Eur J 14:8861–8873

    Article  Google Scholar 

  39. Peters T Jr (1996) All about albumin: biochemistry genetics and medical applications. Academic, San Diego

  40. Napolitano A, De Lucia M, Panzella L, d’Ischia M (2008) Photochem Photobiol 84:593–599

    Article  PubMed  CAS  Google Scholar 

  41. Gerlach M, Trautwein AX, Zecca L, Youdim MB, Riederer P (1995) J Neurochem 65:923–926

    Article  PubMed  CAS  Google Scholar 

  42. Froncisz W, Sarna T, Hyde JS (1980) Arch Biochem Biophys 202:289–303

    Article  PubMed  CAS  Google Scholar 

  43. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Proc Natl Acad Sci USA 97:11869–11874

    Article  PubMed  CAS  Google Scholar 

  44. Zajac GW, Gallas JM, Cheng J, Eisner M, Moss SC, Alvarado-Swaisgood AE (1994) Biochim Biophys Acta 1199:271–278

    Article  PubMed  CAS  Google Scholar 

  45. Zecca L, Bellei C, Costi P, Albertini A, Monzani Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, Eisner M, Crippa PR, Ito S, Wakamatsu K, Bush WD, Ward WC, Simon JD, Zucca FA (2008) Proc Natl Acad Sci USA 105:17567–17572

    Article  PubMed  CAS  Google Scholar 

  46. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) IUBMB Life 57:787–796

    Article  PubMed  CAS  Google Scholar 

  47. Di Donato P, Napolitano A (2003) Pigment Cell Res 16:532–539

    Article  PubMed  Google Scholar 

  48. Simon JD, Peles DN (2010) Acc Chem Res 43:1452–1460

    Article  PubMed  CAS  Google Scholar 

  49. Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L (2008) J Neurochem 106:24–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Italian MIUR for financial support through a PRIN project, and CIRCMSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Casella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2012_951_MOESM1_ESM.pdf

Proton NMR spectrum of the protein amino acids resulting from complete hydrolysis of a representative melanin–BSA conjugate (Fig. S1); MS/MS spectrum of a dopaminated Cys34 fragment (Fig. S2); EPR spectra of PheoBSA samples (Fig. S3); coverage of the BSA sequence upon proteolytic digestion (Table S1); list of the BSA fragments that were not identified after proteolytic digestion of melanin–BSA conjugates (Table S2). This material is available free of charge via the internet at http://pubs.acs.org (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, E., Engelen, M., Monzani, E. et al. Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. J Biol Inorg Chem 18, 81–93 (2013). https://doi.org/10.1007/s00775-012-0951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0951-7

Keywords

Navigation