Skip to main content
Log in

Geometric and electronic structures of the His–Fe(IV)=O and His–Fe(IV)–Tyr hemes of MauG

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Biosynthesis of the tryptophan tryptophylquinone (TTQ) cofactor activates the enzyme methylamine dehydrogenase. The diheme enzyme MauG catalyzes O-atom insertion and cross-linking of two Trp residues to complete TTQ synthesis. Solution optical and Mössbauer spectroscopic studies have indicated that the reactive form of MauG during turnover is an unusual bisFe(IV) intermediate, which has been formulated as a His-ligated ferryl heme [Fe(IV)=O] (heme A), and an Fe(IV) heme with an atypical His/Tyr ligation (heme B). In this study, Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure studies have been combined with density functional theory (DFT) and time-dependent DFT methods to solve the geometric and electronic structures of each heme site in the MauG bisFe(IV) redox state. The ferryl heme site (heme A) is compared with the well-characterized compound I intermediate of cytochrome c peroxidase. Heme B is unprecedented in biology, and is shown to have a six-coordinate, S = 1 environment, with a short (1.85-Å) Fe–O(Tyr) bond. Experimentally calibrated DFT calculations are used to reveal a strong covalent interaction between the Fe and the O(Tyr) ligand of heme B in the high-valence form. A large change in the Fe–O(Tyr) bond distance on going from Fe(II) (2.02 Å) to Fe(III) (1.89 Å) to Fe(IV) (1.85 Å) signifies increasing localization of spin density on the tyrosinate ligand upon sequential oxidation of heme B to Fe(IV). As such, O(Tyr) plays an active role in attaining and stabilizing the MauG bisFe(IV) redox state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A first shell with four Fe–N/O components has a slightly better F value, but the 4.5 Fe–N/O fit is more consistent with the crystal structure.

  2. This short distance is consistent with Fe–O distances (1.83–1.94 Å) obtained from a small-molecule database on related species.

  3. Resolution is the separation at which two different metal–ligand paths can be distinguished.

Abbreviations

CCP:

Cytochrome c peroxidase

CCP-I:

Compound I of cytochrome c peroxidase

DFT:

Density functional theory

EXAFS:

Extended X-ray absorption fine structure

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MADH:

Methylamine dehydrogenase

4MP:

4-Methylphenolate

TD-DFT:

Time-dependent density functional theory

TTQ:

Tryptophan tryptophylquinone

XAS:

X-ray absorption spectroscopy

References

  1. Wang Y, Graichen ME, Liu A, Pearson AR, Wilmot CM, Davidson VL (2003) Biochemistry 42:7318–7325

    Article  PubMed  CAS  Google Scholar 

  2. McIntire WS, Wemmer DE, Chistoserdov A, Lidstrom ME (1991) Science 252:817–824

    Article  PubMed  CAS  Google Scholar 

  3. Davidson VL (2003) Biochim Biophys Acta 1647:230–233

    Article  PubMed  CAS  Google Scholar 

  4. Li X, Jones LH, Pearson AR, Wilmot CM, Davidson VL (2006) Biochemistry 45:13276–13283

    Article  PubMed  CAS  Google Scholar 

  5. Pearson AR, De La Mora-Rey T, Graichen ME, Wang Y, Jones LH, Marimanikkupam S, Agger SA, Grimsrud PA, Davidson VL, Wilmot CM (2004) Biochemistry 43:5494–5502

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Li X, Jones LH, Pearson AR, Wilmot CM, Davidson VL (2005) J Am Chem Soc 127:8258–8259

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Fu R, Lee S, Krebs C, Davidson VL, Liu A (2008) Proc Natl Acad Sci USA 105:8597–8600

    Article  PubMed  CAS  Google Scholar 

  8. Jensen LMR, Sanishvili R, Davidson VL, Wilmot CM (2010) Science 327:1392–1394

    Article  PubMed  CAS  Google Scholar 

  9. Abu Tarboush N, Jensen LMR, Feng ML, Tachikawa H, Wilmot CM, Davidson VL (2010) Biochemistry 49:9783–9791

    Article  PubMed  CAS  Google Scholar 

  10. Li X, Feng M, Wang Y, Tachikawa H, Davidson VL (2006) Biochemistry 45:821–828

    Article  PubMed  CAS  Google Scholar 

  11. Lee S, Shin S, Li X, Davidson V (2009) Biochemistry 48(11):2442–2447

    Article  PubMed  CAS  Google Scholar 

  12. Makris TM, von Koenig K, Schlichting I, Sligar SG (2006) J Inorg Biochem 100:507–518

    Article  PubMed  CAS  Google Scholar 

  13. Rittle J, Green MT (2010) Science 330:933–937

    Article  PubMed  CAS  Google Scholar 

  14. Poulos TL, Raag R (1992) FASEB J 6:674–679

    PubMed  CAS  Google Scholar 

  15. Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM, Krebs C (2004) J Am Chem Soc 126:8108–8109

    Article  PubMed  CAS  Google Scholar 

  16. Shu LJ, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L (1997) Science 275:515–518

    Article  PubMed  CAS  Google Scholar 

  17. Stone KL, Behan RK, Green MT (2005) Proc Natl Acad Sci USA 102:16563–16565

    Article  PubMed  CAS  Google Scholar 

  18. Meharenna YT, Doukov T, Li H, Soltis SM, Poulos TL (2010) Biochemistry 49:2984–2986

    Article  PubMed  CAS  Google Scholar 

  19. Tenderholt A (2005) PySpline. http://pyspline.sourceforge.net/

  20. George GN (2000) EDG_FIT

  21. de Leon JM, Rehr JJ, Zabinsky SI, Albers RC (1991) Phys Rev B 44:4146–4156

    Article  Google Scholar 

  22. Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  23. Rehr JJ, Deleon JM, Zabinsky SI, Albers RC (1991) J Am Chem Soc 113:5135–5140

    Article  CAS  Google Scholar 

  24. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995–3009

    Article  CAS  Google Scholar 

  25. Neese F (2008) ORCA, version 2.6.35

  26. Neese F, Olbrich G (2002) Chem Phys Lett 362:170–178

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  30. Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44:2245–2254

    Article  PubMed  CAS  Google Scholar 

  31. Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  32. Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  33. George SD, Neese F (2010) Inorg Chem 49:1849–1853

    Article  Google Scholar 

  34. George SD, Petrenko T, Neese F (2008) J Phys Chem A 112:12936–12943

    Article  Google Scholar 

  35. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123–134

    Article  PubMed  CAS  Google Scholar 

  36. Tenderholt A (2005) QMForge. http://qmforge.sourceforge.net/

  37. Chandrasekaran P, Stieber SCE, Collins TJ, Que L, Neese F, DeBeer S (2011) Dalton Trans 40:11070–11079

    Article  PubMed  CAS  Google Scholar 

  38. Hahn JE, Scott RA, Hodgson KO, Doniach S, Desjardins SR, Solomon EI (1982) Chem Phys Lett 88:595–598

    Article  CAS  Google Scholar 

  39. Shulman RG, Yafet Y, Eisenberger P, Blumberg WE (1976) Proc Natl Acad Sci USA 73:1384–1388

    Article  PubMed  CAS  Google Scholar 

  40. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314

    Article  CAS  Google Scholar 

  41. Randall CR, Shu LJ, Chiou YM, Hagen KS, Ito M, Kitajima N, Lachicotte RJ, Zang Y, Que L (1995) Inorg Chem 34:1036–1039

    Article  CAS  Google Scholar 

  42. Roe AL, Schneider DJ, Mayer RJ, Pyrz JW, Widom J, Que L (1984) J Am Chem Soc 106:1676–1681

    Article  CAS  Google Scholar 

  43. Anderson LA, Dawson JH (1990) Struct Bonding 74:1–40

    Article  Google Scholar 

  44. Cho J, Jeon S, Wilson SA, Liu LV, Kang EA, Braymer JJ, Lim MH, Hedman B, Hodgson KO, Valentine JS, Solomon EI, Nam W (2011) Nature 478:502–505

    Article  PubMed  CAS  Google Scholar 

  45. Chance M, Powers L, Poulos T, Chance B (1986) Biochemistry 25:1266–1270

    Article  PubMed  CAS  Google Scholar 

  46. Goodin DB, Mcree DE (1993) Biochemistry 32:3313–3324

    Article  PubMed  CAS  Google Scholar 

  47. Houseman ALP, Doan PE, Goodin DB, Hoffman BM (1993) Biochemistry 32:4430–4443

    Article  PubMed  CAS  Google Scholar 

  48. Pfister TD, Gengenbach AJ, Syn S, Lu Y (2001) Biochemistry 40:14942–14951

    Article  PubMed  CAS  Google Scholar 

  49. Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740

    Article  PubMed  CAS  Google Scholar 

  50. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Munck E, Que L (2009) Angew Chem Int Ed 48:3622–3626

    Article  CAS  Google Scholar 

  51. Fujimori DG, Barr EW, Matthews ML, Koch GM, Yonce JR, Walsh CT, Bollinger JM, Krebs C, Riggs-Gelasco PJ (2007) J Am Chem Soc 129:13408–13409

    Article  PubMed  CAS  Google Scholar 

  52. Jackson TA, Rohde JU, Seo MS, Sastri CV, DeHont R, Stubna A, Ohta T, Kitagawa T, Munck E, Nam W, Que L (2008) J Am Chem Soc 130:12394–12407

    Article  PubMed  CAS  Google Scholar 

  53. Hersleth HP, Ryde U, Rydberg P, Gorbitz CH, Andersson KK (2006) J Inorg Biochem 100:460–476

    Article  PubMed  CAS  Google Scholar 

  54. Gumiero A, Metcalfe CL, Pearson AR, Raven EL, Moody PC (2011) J Biol Chem 286:1260–1268

    Article  PubMed  CAS  Google Scholar 

  55. Ling Y, Davidson VL, Zhang Y (2010) J Phys Chem Lett 1:2936–2939

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this research were performed at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research, and by the National Institutes of Health, the National Institute of General Medical Sciences (including P41GM103393), and the National Center for Research Resources (P41RR001209). C.M.W., V.L.D., and T.L.P were supported by the National Institutes of Health grants GM66569, GM41574, and GM42614, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carrie M. Wilmot or Ritimukta Sarangi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures and tables (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, L.M.R., Meharenna, Y.T., Davidson, V.L. et al. Geometric and electronic structures of the His–Fe(IV)=O and His–Fe(IV)–Tyr hemes of MauG. J Biol Inorg Chem 17, 1241–1255 (2012). https://doi.org/10.1007/s00775-012-0939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0939-3

Keywords

Navigation