Skip to main content
Log in

Multicopper oxidase involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

MCO:

Multicopper oxidase

PP:

Pyrophosphate

TEM:

Transmission electron microscopy

References

  1. Nelson YM, Lion LW (2003) In: Selim HM, Kingerly WL (eds) Geochemical and hydrological reactivity of heavy metals in soils. CRC Press, Boca Raton

    Google Scholar 

  2. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Annu Rev Earth Planet Sci 32:287–328

    Article  CAS  Google Scholar 

  3. Morgan JJ (2000) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  4. Morgan JJ (2005) Geochim Cosmochim Acta 69:35–48

    Article  CAS  Google Scholar 

  5. Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Acc Chem Res 43:2–9

    Article  PubMed  CAS  Google Scholar 

  6. Brouwers G-J, Vijgenboom E, Corstjens PLAM, de Vrind JPM, de Vrind-de Jong EW (2000) Geomicrobiol J 17:1–24

    Article  CAS  Google Scholar 

  7. Sunda WG, Kieber DJ (1994) Nature 367:62–64

    Article  CAS  Google Scholar 

  8. Brouwers G-J, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) Appl Environ Microbiol 65:1762–1768

    PubMed  CAS  Google Scholar 

  9. van Waasbergen LG, Hildebrand M, Tebo BM (1996) J Bacteriol 178:3517–3530

    PubMed  Google Scholar 

  10. Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) Environ Microbiol 9:944–953

    Article  PubMed  CAS  Google Scholar 

  11. Larsen EI, Sly LI, McEwan AG (1999) Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  12. Francis CA, Tebo BM (2002) Appl Environ Microbiol 68:874–880

    Article  PubMed  CAS  Google Scholar 

  13. Francis CA, Casciotti KL, Tebo BM (2002) Arch Microbiol 178:450–456

    Article  PubMed  CAS  Google Scholar 

  14. Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-de Jong EW, de Vrind JPM, Corstjens PLAM (1997) Appl Environ Microbiol 63:4793–4799

    PubMed  CAS  Google Scholar 

  15. Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Appl Environ Microbiol 74:1527–1534

    Article  PubMed  CAS  Google Scholar 

  16. Corstjens PLAM, de Vrind JPM, Goosen T, de Vrind-de Jong EW (1997) Geomicrobiol J 14:91–108

    Article  CAS  Google Scholar 

  17. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  18. Schlosser D, Hofer C (2002) Appl Environ Microbiol 68:3514–3521

    Article  PubMed  CAS  Google Scholar 

  19. Hofer C, Schlosser D (1999) FEBS Lett 451:186–190

    Article  PubMed  CAS  Google Scholar 

  20. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Proc Natl Acad Sci USA 102:5558–5563

    Google Scholar 

  21. de Silva D, Davis-Kaplan S, Fergestad J, Kaplan J (1997) J Biol Chem 272:14208–14213

    Article  PubMed  Google Scholar 

  22. Allendorf MD, Spira DJ, Solomon EI (1985) Proc Natl Acad Sci USA 82:3063–3067

    Google Scholar 

  23. Dick GJ, Lee YE, Tebo BM (2006) Appl Environ Microbiol 72:3184–3190

    Article  PubMed  CAS  Google Scholar 

  24. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) Proc Natl Acad Sci USA 104:13609–13614

    Google Scholar 

  25. Cole JL, Avigliano L, Morpurgo L, Solomon EI (1991) J Am Chem Soc 113:9080–9089

    Article  CAS  Google Scholar 

  26. Hirota S, Matsumoto H, Huang H-W, Sakurai T, Kitagawa T, Yamauchi O (1998) Biochem Biophys Res Commun 243:435–437

    Article  PubMed  CAS  Google Scholar 

  27. Whittaker JW (2012) Arch Biochem Biophys. doi:10.1016/j.abb.2011.1012.1008

    Google Scholar 

  28. Lindley PF, Card G, Zaitseva I, Zaitsev V, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) J Biol Inorg Chem 2:454–463

    Article  CAS  Google Scholar 

  29. Machonkin TE, Solomon EI (2000) J Am Chem Soc 122:12547–12560

    Article  CAS  Google Scholar 

  30. Quintanar L, Gebhard M, Wang T-P, Kosman DJ, Solomon EI (2004) J Am Chem Soc 126:6579–6589

    Article  PubMed  CAS  Google Scholar 

  31. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) Proc Natl Acad Sci USA 102:15459–15464

    Google Scholar 

  32. Stoj CS, Augustine AJ, Zeigler L, Solomon EI, Kosman DJ (2006) Biochemistry 45:12741–12749

    Article  PubMed  CAS  Google Scholar 

  33. Singh SK, Grass G, Rensing C, Montfort WR (2004) J Bacteriol 186:7815–7817

    Article  PubMed  CAS  Google Scholar 

  34. Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) J Am Chem Soc 132:2005–2015

    Article  PubMed  CAS  Google Scholar 

  35. Weiss R, Gold A, Trautwein AX, Terner J (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic, Boston

  36. Groves JT, Stern MK (1988) J Am Chem Soc 110:8628–8638

    Article  CAS  Google Scholar 

  37. Manchanda R, Brudvig GW, Crabtree RH (1995) Coord Chem Rev 144:1–38

    Article  CAS  Google Scholar 

  38. Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938

    Article  PubMed  CAS  Google Scholar 

  39. Dave BC, Czernuszewicz RS (1994) Inorg Chim Acta 227:33–41

    Article  CAS  Google Scholar 

  40. Waldo GS, Penner-Hahn JE (1995) Biochemistry 34:1507–1512

    Article  PubMed  CAS  Google Scholar 

  41. Khangulov SV, Barynin VV, Voevodskaya NV, Grebenko AI (1990) Biochim Biophys Acta 1020:305–310

    Article  CAS  Google Scholar 

  42. Mullins CS, Pecoraro VL (2008) Coord Chem Rev 252:416–443

    Article  PubMed  CAS  Google Scholar 

  43. Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH (2004) Chem Rev 104:3981–4026

    Article  PubMed  CAS  Google Scholar 

  44. Bhula R, Gainsford GJ, Weatherburn DC (1988) J Am Chem Soc 110:7550–7552

    Article  CAS  Google Scholar 

  45. McEnvoy JP, Brudvig GW (2006) Chem Rev 106:4455–4483

    Article  Google Scholar 

  46. Cady CW, Crabtree RH, Brudvig GW (2008) Coord Chem Rev 252:444–455

    Article  PubMed  CAS  Google Scholar 

  47. Liu X, Theil EC (2005) Acc Chem Res 38:167–175

    Article  PubMed  CAS  Google Scholar 

  48. Ha Y, Shi D, Small GW, Theil EC, Allewell NM (1999) J Biol Inorg Chem 4:243–256

    Article  PubMed  CAS  Google Scholar 

  49. Turano P, Lalli D, Felli IC, Theil EC, Bertini I (2010) Proc Natl Acad Sci USA 107:545–550

    Google Scholar 

  50. MacDonnell FM, Fackler NLP, Stern C, O’Halloran TV (1994) J Am Chem Soc 116:7431–7432

    Article  CAS  Google Scholar 

  51. Bossek U, Weyhermuller T, Wieghardt K, Nuber B, Weiss J (1990) J Am Chem Soc 112:6387–6388

    Article  CAS  Google Scholar 

  52. Larson E, Soo Lah M, Li X, Bonadies JA, Pecoraro VL (1992) Inorg Chem 31:373–378

    Google Scholar 

  53. Chandra SK, Chakravorty A (1992) Inorg Chem 31:760–765

    Article  CAS  Google Scholar 

  54. Mandernack KW, Fogel ML, Tebo BM, Usui A (1995) Geochim Cosmochim Acta 59:4409–4425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Radhika Rajendran for developing the linear least squares fitting algorithm in VBA Excel and Satya Chinni for producing some of the exosporium preparations. This work was partially funded by NSF grants OCE-1031200 and OCE-1129553 to BMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Spiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldatova, A.V., Butterfield, C., Oyerinde, O.F. et al. Multicopper oxidase involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO2 . J Biol Inorg Chem 17, 1151–1158 (2012). https://doi.org/10.1007/s00775-012-0928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0928-6

Keywords

Navigation