Skip to main content
Log in

Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-β(1–40) and zinc(II)-bound amyloid-β(1–42) with dynamics

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Binding of divalent metal ions with intrinsically disordered fibrillogenic proteins, such as amyloid-β (Aβ), influences the aggregation process and the severity of neurodegenerative diseases. The Aβ monomers and oligomers are the building blocks of the aggregates. In this work, we report the structures and free energy landscapes of the monomeric zinc(II)-bound Aβ40 (Zn:Aβ40) and zinc(II)-bound Aβ42 (Zn:Aβ42) intrinsically disordered fibrillogenic metallopeptides in an aqueous solution by utilizing an approach that employs first principles calculations and parallel tempering molecular dynamics simulations. The structural and thermodynamic properties, including the secondary and tertiary structures and conformational Gibbs free energies of these intrinsically disordered metallopeptide alloforms, are presented. The results show distinct differing characteristics for these metallopeptides. For example, prominent β-sheet formation in the N-terminal region (Asp1, Arg5, and Tyr10) of Zn:Aβ40 is significantly decreased or lacking in Zn:Aβ42. Our findings indicate that blocking multiple reactive residues forming abundant β-sheet structure located in the central hydrophobic core and C-terminal regions of Zn:Aβ42 via antibodies or small organic molecules might help to reduce the aggregation of Zn(II)-bound Aβ42. Furthermore, we find that helix formation increases but β-sheet formation decreases in the C-terminal region upon Zn(II) binding to Aβ. This depressed β-sheet formation in the C-terminal region (Gly33–Gly38) in monomeric Zn:Aβ42 might be linked to the formation of amorphous instead of fibrillar aggregates of Zn:Aβ42.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Breydo L, Uversky VN (2011) Metallomics 3:1163–1180

    Article  PubMed  CAS  Google Scholar 

  2. Tõugu V, Palumaa P (2012) Coord Chem Rev. doi:10.1016/jcc.r.2011.12.008

    Google Scholar 

  3. Brown DR (2009) Dalton Trans (21):4069–4076

  4. Walsh DM, Selkoe DJ (2007) J Neurochem 101:1172–1184

    Article  PubMed  CAS  Google Scholar 

  5. Hardy J, Selkoe DJ (2002) Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  6. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  7. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) J Biol Chem 272:22364–22372

    Article  PubMed  CAS  Google Scholar 

  8. Chen TT, Wang XY, He YF, Zhang CL, Wu ZY, Liao K, Wang JJ, Guo ZJ (2009) Inorg Chem 48:5801–5809

    Article  PubMed  CAS  Google Scholar 

  9. Garai K, Sahoo B, Kaushalya SK, Desai R, Maiti S (2007) Biochemistry 46:10655–10663

    Article  PubMed  CAS  Google Scholar 

  10. Lovell MA, Xie CS, Marksbery WR (1999) Brain Res 823:88–95

    Article  PubMed  CAS  Google Scholar 

  11. Cardoso SM, Rego AC, Pereira C, Oliveira CR (2005) Neurotox Res 7:273–281

    Article  PubMed  CAS  Google Scholar 

  12. Huang XD, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JDA, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  PubMed  CAS  Google Scholar 

  13. Yoshiike Y, Tanemura K, Murayama O, Akagi T, Murayama M, Sato S, Sun XY, Tanaka N, Takashima A (2001) J Biol Chem 276:32293–32299

    Article  PubMed  CAS  Google Scholar 

  14. Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC (2011) J Biol Chem 286:4248–4256

    Article  PubMed  CAS  Google Scholar 

  15. Reinhard C, Hébert SS, De Strooper B (2005) EMBO J 24:3996–4006

    Article  PubMed  CAS  Google Scholar 

  16. Jarrett JT, Berger EP, Lansbury PT (1993) Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  17. El-Agnaf OM, Mahil DS, Patel BP, Austen BM (2000) Biochem Biophys Res Commun 273:1003–1007

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y, McLaughlin R, Goodyer C, LeBlac A (2002) J Cell Biol 156:519–529

    Article  PubMed  CAS  Google Scholar 

  19. Mucke LE, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  20. Danielsson J, Pierattelli R, Banci L, Graslund A (2007) FEBS J 274:46–59

    Article  PubMed  CAS  Google Scholar 

  21. Sato T, Kienlen-Campard P, Mahiuddin A, Liu W, Li H, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO (2006) Biochemistry 45:5503–5516

    Article  PubMed  CAS  Google Scholar 

  22. Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Segalas-Milazzo I, Debey P, Rebuffat S (2006) J Biol Chem 281:2151–2161

    Article  PubMed  CAS  Google Scholar 

  23. Gaggelli E, Janicka-Klos A, Jankowska E, Koxlowski H, Migliorini C, Molteni E, Valensin D, Valensin G, Wieczerzak E (2008) J Phys Chem B 112:100–109

    Article  PubMed  CAS  Google Scholar 

  24. Mekmouche Y, Coppel Y, Hochgrafe K, Guilloreau L, Tallmard C, Mazarguil H, Faller P (2005) ChemBioChem 6:1663–1671

    Article  PubMed  CAS  Google Scholar 

  25. Syme CD, Viles JH (2006) Proteins Proteomics 1764:246–256

    Article  CAS  Google Scholar 

  26. Rezaei-Ghaleh N, Giller K, Becker S, Zweckstetter M (2011) Biophys J 101:1202–1211

    Article  PubMed  CAS  Google Scholar 

  27. Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S (2008) J Biol Chem 283:10784–10792

    Article  PubMed  CAS  Google Scholar 

  28. Olofsson A, Lindhagen-Persson M, Vestling M, Sauer-Eriksson AE, Ohman A (2009) FEBS J 276:4051–4060

    Article  PubMed  CAS  Google Scholar 

  29. Liu ST, Howlett G, Barrow CJ (1999) Biochemistry 38:9373–9378

    Article  PubMed  CAS  Google Scholar 

  30. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031

    Article  PubMed  CAS  Google Scholar 

  31. Tsvetkov PO, Kulikova AA, Golovin AV, Tkachev YV, Archakov AI, Kozin SA, Makarov AA (2010) Biophys J 99:L84–L86

    Article  PubMed  CAS  Google Scholar 

  32. Yang DS, McLaurin J, Qin KF, Westaway D, Fraser PE (2000) Eur J Biochem 267:6692–6698

    Article  PubMed  CAS  Google Scholar 

  33. Zirah S, Rebuffat S, Kozin SA, Debey P, Fournier F, Lesage D, Tabet JC (2003) J Mass Spectrom 228:999–1016

    Article  CAS  Google Scholar 

  34. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) J Biol Chem 5:20466–20473

    Article  Google Scholar 

  35. Miura T, Suzuki K, Takeuchi H (2001) J Mol Struct 598:79–84

    Article  CAS  Google Scholar 

  36. Furlan S, La Penna G (2009) Phys Chem Chem Phys 11:6468–6481

    Article  PubMed  CAS  Google Scholar 

  37. Li WF, Zhang J, Su Y, Wang J, Qin M, Wang W (2007) J Phys Chem B 111:13814–13821

    Article  PubMed  CAS  Google Scholar 

  38. Miller Y, Ma BY, Nussinov R (2010) Proc Natl Acad Sci USA 107:9490–9495

    Article  PubMed  CAS  Google Scholar 

  39. Bergeron DE, Coskuner O, Hudgens JW, Gonzalez CA (2008) J Phys Chem C 112:12808–12814

    Article  CAS  Google Scholar 

  40. Coskuner O, Bergeron DE, Rincon L, Hudgens JW, Gonzalez CA (2008) J Phys Chem A 112:2940–2947

    Article  PubMed  CAS  Google Scholar 

  41. Coskuner O, Bergeron DE, Rincon L, Hudgens JW, Gonzalez CA (2009) J Phys Chem A 113:2491–2499

    Article  PubMed  CAS  Google Scholar 

  42. Coskuner O, Jarvis EAA (2008) J Phys Chem A 112:2628–2633

    Article  PubMed  CAS  Google Scholar 

  43. Coskuner O, Allison TC (2011) In: Allison TC, Coskuner O, Gonzalez CA (eds) Metallic systems: a quantum chemist’s perspective. CRC, Boca Raton, pp 107–134

    Google Scholar 

  44. Coskuner O, Gonzalez CA (2011) In: Allison TC, Coskuner O, Gonzalez CA (eds) Metallic systems: a quantum chemist’s perspective. CRC, Boca Raton, pp 83–106

    Google Scholar 

  45. Wise O, Xu L, Coskuner O (2011) In: Allison TC, Coskuner O, Gonzalez CA (eds) Metallic systems: a quantum chemist’s perspective. CRC, Boca Raton, pp 29–82

    Google Scholar 

  46. Shi SH, Yan L, Yang Y, Fisher-Shaulsky J, Tacher T (2003) J Comput Chem 24:1059–1076

    Article  PubMed  CAS  Google Scholar 

  47. Koca J, Zhan CG, Rittenhouse RC, Ornstein RL (2001) J Am Chem Soc 123:817–826

    Article  PubMed  CAS  Google Scholar 

  48. Suarez D, Merz KM (2001) J Am Chem Soc 123(3759):3770

    Google Scholar 

  49. Lin F, Wang RX (2010) J Chem Theory Comput 6:1852–1870

    Article  CAS  Google Scholar 

  50. Peters MB, Yang Y, Wang B, Fusti-Molnar L, Weaver MN, Merz KM (2010) Chem Theory Comput 6:2935–2947

    Article  CAS  Google Scholar 

  51. Banci L (2003) Curr Opin Chem Biol 7:143–149

    Article  PubMed  CAS  Google Scholar 

  52. Comba P, Remenyi R (2003) Coord Chem Rev 238:9–20

    Article  Google Scholar 

  53. Hoops SC, Anderson KW, Merz KM (1991) J Am Chem Soc 113:8262–8270

    Article  CAS  Google Scholar 

  54. Vedani A, Huhta DW (1990) J Am Chem Soc 112:4759–4767

    Article  CAS  Google Scholar 

  55. Wu R, Lu Z, Cao Z, Zhang Y (2011) J Chem Theory Comput 7:433–443

    Article  PubMed  CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven JAT, Kuden KN, Burant JC, Milliam JM, Iyengar SS, Tomasi J, Barone V, Munnucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez CA, Pople JA (2004) Gaussian 03. Gaussian, Wallingford

  57. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  58. Sousa SF, Fernandes PA, Ramos MJ (2010) In: Paneth P, Dybala-Defratyka A (eds) Kinetics and dynamics: from nano- to bio-scale. Springer, New York, pp 299–330

    Google Scholar 

  59. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  60. Simmerling C, Hornak V, Abel R, Okur A, Strockbine B, Roitberg A (2006) Proteins 65:712

    Article  PubMed  Google Scholar 

  61. Case DA, Onufriev A, Bashford D (2004) Proteins 55:383–394

    Article  PubMed  Google Scholar 

  62. Allen MP, Tildesley DJ (1999) Computer simulations of liquids. Oxford University Press, Oxford

    Google Scholar 

  63. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

    Google Scholar 

  64. van der Spoel D, Patriksson A (2008) Phys Chem Chem Phys 10:2073–2077

    Article  PubMed  Google Scholar 

  65. Prakash MK, Barducci A, Parrinello M (2011) J Chem Theory Comput 7:2025

    Article  CAS  Google Scholar 

  66. Coskuner O, Deiters UK (2006) Z Phys Chem 220:349–369

    Article  CAS  Google Scholar 

  67. Coskuner O, Deiters UK (2007) Z Phys Chem 221:785–799

    Article  CAS  Google Scholar 

  68. Wise-Scira O, Xu L, Kitahara T, Perry G, Coskuner O (2011) J Chem Phys 135:205101

    Article  PubMed  Google Scholar 

  69. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897

    Article  PubMed  CAS  Google Scholar 

  70. Lee MR, Duan Y, Kollman PA (2000) Proteins Struct Funct Genet 39:309–316

    Article  PubMed  CAS  Google Scholar 

  71. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  72. Yang MF, Teplow DB (2008) J Mol Biol 384:450–464

    Article  PubMed  CAS  Google Scholar 

  73. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE (2004) Proc Natl Acad Sci USA 101:17345–17350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an allocation and computing resources provided with the help of the National Institute for Computational Sciences (grant TG-CHE110044). The calculations and simulations were performed on Kraken at the National Institute for Computational Sciences and Ranger at the Texas Advanced Computing Center. G.P. is thankful for the financial support provided by the National Institutes of Health (G12-RR013646), the RCMI Center for Interdisciplinary Health Research, and the Alzheimer’s Association. O.C. is thankful for support from the University of Texas at San Antonio and the Neuroscience Institute of the San Antonio Life Sciences Institute (Charles Wilson) at the University of Texas at San Antonio. We also thank Carlos Gonzalez (NIST) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkid Coskuner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials (PDF 16343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wise-Scira, O., Xu, L., Perry, G. et al. Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-β(1–40) and zinc(II)-bound amyloid-β(1–42) with dynamics. J Biol Inorg Chem 17, 927–938 (2012). https://doi.org/10.1007/s00775-012-0909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0909-9

Keywords

Navigation