Skip to main content

Interaction of liposome-encapsulated cisplatin with biomolecules

Abstract

We prepared liposomes by hydrating 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid with aqueous solutions of three “probe” molecules—cis-diamminedichloroplatinum(II) (cis-[PtII(NH3)2Cl2], cisplatin), guanosine 5′-monophosphate (5′-GMP), and 9-ethylguanine (9-EtG)—in phosphate-buffered saline as well as N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid buffer. The positively charged hydrolysis product of cisplatin, [PtII(NH3)2Cl(H2O)]+, is in the inner core of the liposomes and negatively charged 5′-GMP embeds in the lipid bilayer of liposomes. In the presence of cisplatin, the size of the liposomes remains unchanged, and for 5′-GMP-embedded liposomes the size increases significantly compared with that of empty or control liposomes. In contrast, the neutral biomolecule 9-EtG was found to be dispersed in the exterior bulk water and the size of the liposomes remained the same as that of empty or control liposomes. When cisplatin-containing liposomes mix with 5′-GMP-embedded liposomes or liposomes with 9-EtG, the N7 nitrogen atom of 5′-GMP or 9-EtG binds the cisplatin, thus replacing the “leaving groups” and forming a bisadduct. After 48 h of mixing, the size of the liposomes changes for the mixture of 5′-GMP-embedded liposomes and cisplatin-containing liposomes. We used 1H and 31P NMR spectroscopic techniques to monitor incorporation or association of cisplatin and biomolecules with liposomes and their subsequent reactions with each other. The dynamic light scattering technique provided the size distribution of the liposomes in the presence and absence of probe molecules.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  2. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  PubMed  CAS  Google Scholar 

  3. Reedijk J (1996) Chem Commun 801–806

  4. Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrowi J, Sadler PJ (1998) J Biol Chem 273:14721–14730

    Article  PubMed  CAS  Google Scholar 

  5. Kartz F (1993) In: Keppler BK (ed) Metal complexes in cancer chemotherapy. VCH, Weinheim, pp 391–429

    Google Scholar 

  6. Barnham KJ, Djuran MI, Murdoch PS, Ranford JD, Sadler PJ (1996) Inorg Chem 35:1065–1072

    Article  PubMed  CAS  Google Scholar 

  7. Dolman RC, Deacon GB, Hambley TW (2002) J Inorg Biochem 88:260–267

    Article  PubMed  CAS  Google Scholar 

  8. Lempers ELM, Reedijk J (1991) Adv Inorg Chem 37:175–217

    Article  CAS  Google Scholar 

  9. Borch RF, Pleasants ME (1979) Proc Natl Acad Sci USA 76:6611–6614

    Article  PubMed  CAS  Google Scholar 

  10. Gately DP, Howell SB (1993) Br J Cancer 67:1171–1176

    Article  PubMed  CAS  Google Scholar 

  11. Greene RF, Chatterji DC, Hiranaka PK, Gallelli JF (1979) Am J Hosp Pharm 36:38–43

    PubMed  CAS  Google Scholar 

  12. Miller SE, House DA (1989) Inorg Chim Acta 166:189–197

    Article  CAS  Google Scholar 

  13. Marcelis ATM, Van Kralingen CG, Reedijk J (1980) J Inorg Biochem 13:213–222

    Article  CAS  Google Scholar 

  14. Davies MS, Berners-Price SJ, Hambley TW (2000) Inorg Chem 39:5603–5613

    Article  PubMed  CAS  Google Scholar 

  15. Gabizon A (2003) J Liposome Res 13:17–20

    Article  PubMed  Google Scholar 

  16. Torchilin VP (2005) Nat Rev Drug Discov 4:145–160

    Article  PubMed  CAS  Google Scholar 

  17. Boulikas T (2004) Oncol Rep 12:3–12

    PubMed  CAS  Google Scholar 

  18. Boulikas T (2009) Expert Opin Invest Drugs 18:1197–1218

    Article  CAS  Google Scholar 

  19. Mylonakis N, Athanasiou A, Ziras N, Angel J, Rapti A, Lampaki S, Politis N, Karanikas C, Kosmas C (2010) Lung Cancer 68:240–247

    Article  PubMed  CAS  Google Scholar 

  20. Jeong Y-I, Kim S-T, Jin S-G, Ryu H-H, Jin Y-H, Jung T-Y, Kim I-Y, Jung S (2008) J Pharm Sci 97:1268–1276

    Article  PubMed  CAS  Google Scholar 

  21. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K (2001) Pharm Res 18:1035–1041

    Article  PubMed  CAS  Google Scholar 

  22. Burger KNJ, Staffhorst RWHM, De Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, De Kruijff B (2002) Nat Med 8:81–84

    Article  PubMed  CAS  Google Scholar 

  23. Chupin V, de Kroon AI, de Kruijff B (2004) J Am Chem Soc 126:13816–13821

    Article  PubMed  CAS  Google Scholar 

  24. Liu Q, Qu Y, Van Antwerpen R, Farrell N (2006) Biochemistry 45:4248–4256

    Article  PubMed  CAS  Google Scholar 

  25. Ramachandran S, Quist AP, Kumar S, Lal R (2006) Langmuir 22:8156–8162

    Article  PubMed  CAS  Google Scholar 

  26. Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y (2007) Langmuir 23:4019–4025

    Article  PubMed  CAS  Google Scholar 

  27. Aryal S, Hu CM, Zhang L (2010) ACS Nano 4:251–258

    Article  PubMed  CAS  Google Scholar 

  28. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ (2009) J Am Chem Soc 131:14652–14653

    Article  PubMed  CAS  Google Scholar 

  29. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) ACS Nano 3:307–316

    Article  PubMed  CAS  Google Scholar 

  30. Ostojic GN, Ireland JR, Hersam MC (2008) Langmuir 24:9784–9789

    Article  PubMed  CAS  Google Scholar 

  31. Li SD, Howell SB (2010) Mol Pharm 7:280–290

    Article  PubMed  CAS  Google Scholar 

  32. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V (2008) Mol Pharm 5:849–862

    Article  PubMed  CAS  Google Scholar 

  33. Rieter WJ, Pott KM, Taylor KM, Lin W (2008) J Am Chem Soc 130:11584–11585

    Article  PubMed  CAS  Google Scholar 

  34. Casolaro M, Cini R, Del Bello B, Ferrali M, Maellaro E (2009) Biomacromolecules 10:944–949

    Article  PubMed  CAS  Google Scholar 

  35. Goyal P, Goyal K, Vijaya Kumar SG, Singh A, Katare OP, Mishra DN (2005) Acta Pharm 55:1–25

    PubMed  CAS  Google Scholar 

  36. Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K, Stathopoulos J, Provata A, Yiamboudakis P, Veldekis D, Lolis N, Georgatou N, Toubis M, Pappas C, Tsoukalas G (2010) Ann Oncol 21:2227–2232

    Article  PubMed  CAS  Google Scholar 

  37. Feczko T (2009) Recent Pat Mater Sci 2:32–42

    Article  CAS  Google Scholar 

  38. Hill JM, Speer RJ (1982) Anticancer Res 2:173–186

    PubMed  CAS  Google Scholar 

  39. Rosenberg B (1977) Adv Exp Med Biol 91:129–150

    PubMed  CAS  Google Scholar 

  40. Ishida T, Takanashi Y, Doi H, Yamamoto I, Kiwada H (2002) Int J Pharm 232:59–67

    Article  PubMed  CAS  Google Scholar 

  41. Fujimoto K, Toyoda T, Fukui Y (2007) Macromolecules 40:5122–5128

    Article  CAS  Google Scholar 

  42. Jin Y, Gao X (2009) J Am Chem Soc 131:17774–17776

    Article  PubMed  CAS  Google Scholar 

  43. El Maghraby GMM, Williams AC, Barry BW (2005) Int J Pharm 292:179–185

    Article  PubMed  Google Scholar 

  44. Fichtner I, Reszka R, Arndt D, Zeisig R (2003) J Liposome Res 13:9–15

    Article  PubMed  CAS  Google Scholar 

  45. Velinova MJ, Staffhorst RW, Mulder WJ, Dries AS, Jansen BA, de Kruijff B, de Kroon AI (2004) Biochim Biophys Acta 1663:135–142

    Article  PubMed  CAS  Google Scholar 

  46. Du J, Lu W-L, Ying X, Liu Y, Du P, Tian W, Men Y, Guo J, Zhang Y, Li R-J, Zhou J, Lou J-N, Wang J-C, Zhang X, Zhang Q (2009) Mol Pharm 6:905–917

    Article  PubMed  CAS  Google Scholar 

  47. Olson JE, Alexander C, Feller DA, Clayman ML, Ramnath EM (1995) J Neurosci Res 40:333–342

    Article  PubMed  CAS  Google Scholar 

  48. Lumry R, Smith EL, Glantz RR (1951) J Am Chem Soc 73:4330–4340

    Article  CAS  Google Scholar 

  49. Vermathen M, Vermathen P, Simonis U, Bigler P (2008) Langmuir 24:12521–12533

    Article  PubMed  CAS  Google Scholar 

  50. Swairjo MA, Roberts MF, Campos M-B, Dedman JR, Seaton BA (1994) Biochemistry 33:10944–10950

    Article  PubMed  CAS  Google Scholar 

  51. Crans DC, Rithner CD, Baruah B, Gourley BL, Levinger NE (2006) J Am Chem Soc 128:4437–4445

    Article  PubMed  CAS  Google Scholar 

  52. Vermathen M, Louie EA, Chodosh AB, Ried S, Simonis U (2000) Langmuir 16:210–221

    Article  CAS  Google Scholar 

  53. Ventura CA, Giannone I, Paolino D, Pistarà V, Corsaro A, Puglisi G (2005) Eur J Med Chem 40:624–631

    Article  PubMed  CAS  Google Scholar 

  54. Huster D, Arnold K, Gawrisch K (1999) J Phys Chem B 103:243–251

    Article  CAS  Google Scholar 

  55. Calzolai L, Gaggelli E, Maccotta A, Valensin G (1996) J Mag Reson Ser B 112:228–235

    Article  CAS  Google Scholar 

  56. Betageri GV, Parsonsa DL (1992) Int J Pharm 81:235–241

    Article  CAS  Google Scholar 

  57. Koudelka S, Turanek-Knotigova P, Masek J, Korvasova Z, Skrabalova M, Plockova J, Bartheldyova E, Turanek J (2010) J Pharm Sci 99:2309–2319

    PubMed  CAS  Google Scholar 

  58. Ding B, Xia S, Hayat K, Zhang X (2009) J Agric Food Chem 57:2938–2944

    Article  PubMed  CAS  Google Scholar 

  59. Fan M, Xu S, Xia S, Zhang X (2007) J Agric Food Chem 55:3089–3095

    Article  PubMed  CAS  Google Scholar 

  60. Benech R-O, Kheadr EE, Lacroix C, Fliss I (2002) Appl Environ Microbiol 68:5607–5619

    Article  PubMed  CAS  Google Scholar 

  61. Were LM, Bruce BD, Davidson PM, Weiss J (2003) J Agric Food Chem 51:8073–8079

    Article  PubMed  CAS  Google Scholar 

  62. Brzozowska I, Figaszewski ZA (2003) Colloids Surf B 27:303–309

    Article  CAS  Google Scholar 

  63. Makino K, Yamada T, Kimura M, Oka T, Ohshima H, Kondo T (1991) Biophys Chem 41:175–183

    Article  PubMed  CAS  Google Scholar 

  64. Appleton TG, Berry RD, Davis CA, Hall JR, Kimlin HA (1984) Inorg Chem 23:3514–3521

    Article  CAS  Google Scholar 

  65. Dijt FJ, Canters GW, Den Hartog JHJ, Marcelis ATM, Reedijk J (1984) J Am Chem Soc 106:3644–3647

    Article  CAS  Google Scholar 

  66. Frey U, Ranford JD, Sadler PJ (1993) Inorg Chem 32:1333–1340

    Article  CAS  Google Scholar 

  67. Urata H, Akagi M (1989) Biochem Biophys Res Commun 161:819–824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the start-up fund of Kennesaw State University (KSU), Chemistry and Biochemistry, the KSU Incentive fund (CETL), and the KSU CSM Mentor Protégé fund (BARUAH-05-FY2011-01) awarded to B.B. B.B. would like to thank Dr. Mark Mitchell, Department Chair, Dr. Laurence Peterson, former Dean, and Dr. Ronald Matson, current Dean of the College of Science and Mathematics for their enormous support. B.B. is thankful to Dr. Jason Locklin at the University of Georgia and Dr. David Gottfried at the Georgia Institute of Technology Nanotechnology Research Center for help with the DLS experiments. B.B. thanks Dr. Michael Miller at Auburn University for the TEM measurements, and would also like to thank Dr. Kevin Gwaltney for his assistance with the NMR measurements and Mr. Benjamin Huck for his constant support in setting up the laboratory. B.B. is also thankful to Dr. Sandra Bonetti from Colorado State University–Pueblo for careful proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Baruah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1487 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baruah, B., Surin, A. Interaction of liposome-encapsulated cisplatin with biomolecules. J Biol Inorg Chem 17, 899–910 (2012). https://doi.org/10.1007/s00775-012-0907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0907-y

Keywords