Skip to main content

Advertisement

Log in

Binding of Cu(II) complexes of oxicam NSAIDs to alternating AT and homopolymeric AT sequences: differential response to variation in backbone structure

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Besides their principal functions as painkillers and anti-inflammatory agents, drugs belonging to the nonsteroidal anti-inflammatory drug (NSAID) group also have anticancer properties. Cu(II) complexes of these drugs enhance the anticancer effect. How they exert this effect is not clear. As a possible molecular mechanism, our group has already shown that the Cu(II) complexes of two oxicam NSAIDs with anticancer properties, viz. piroxicam and meloxicam, can directly bind to the DNA backbone. AT stretches are abundant in the eukaryotic genome. These stretches are more accessible to binding of different ligands, resulting in expression of different functions. AT stretches containing both alternating base pairs and homopolymeric bases in individual strands show subtle differences in backbone structures. It is therefore of interest to see how the Cu(II)–NSAID complexes respond to such differences in backbone structure. Binding studies of these complexes with alternating polydA–dT and homopolymeric polydA–polydT have been conducted using UV–vis absorption titration studies, UV melting studies and circular dichroism spectroscopy. Competitive binding with the standard intercalator ethidium bromide and the minor groove binder 4′,6-diamidino-2-phenylindole was monitored using fluorescence to identify the possible binding mode. Our results show that Cu(II)–NSAID complexes are highly sensitive to the subtle differences in backbone structures of polydA–dT and polydA–polydT and respond to them by exhibiting different binding properties, such as binding constants, effect on duplex stability and binding modes. Both complexes have a similar binding mode with polydA–dT, which is intercalative, but for polydA–polydT, the results point to a mixed mode of binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Patrono C, Rocca B (2009) Pharmacol Res 59:285–289

    Article  PubMed  CAS  Google Scholar 

  2. Chakraborty S, Sehanobish E, Sarkar M (2010) Chem Phys Lett 501:118–122

    Article  CAS  Google Scholar 

  3. Chakraborty H, Mondal S, Sarkar M (2008) Biophys Chem 137:28–34

    Article  PubMed  CAS  Google Scholar 

  4. Chakraborty H, Devi PG, Sarkar M, Dasgupta D (2008) Mini Rev Med Chem 8:331–349

    Article  PubMed  CAS  Google Scholar 

  5. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM (2002) Coord Chem Rev 232:95–126

    Article  CAS  Google Scholar 

  6. Zhou Y, Hancock JF, Lichtenberger LM (2010) PLoS One 5:e8811

    Article  PubMed  Google Scholar 

  7. Duffy CP, Elliott CJ, O’Connor RA, Heenan MM, Coyle S, Cleary IM, Kavanagh K, Verhaegen S, O’Loughlin CM, NicAmhlaoibh R, Clynes M (1998) Eur J Cancer 34:1250–1259

    Article  PubMed  CAS  Google Scholar 

  8. Rao CV, Reddy BS (2004) Curr Cancer Drug Targets 4:29–42

    Article  PubMed  CAS  Google Scholar 

  9. Cho S-J, Kim N, Kim JS, Jung HC, Song IS (2007) Dig Dis Sci 52:1713–1721

    Article  PubMed  CAS  Google Scholar 

  10. Antonakopoulos N, Karamanolis DG (2007) Hepatogastroenterology 54:1694–1700

    PubMed  CAS  Google Scholar 

  11. Shi J, He Q, An J, Sun H, Huang Y, Sheikh MS (2009) Mol Cell Pharmacol 1:92–97

    Article  PubMed  CAS  Google Scholar 

  12. Ulrich CM, Bigler J, Potter JD (2006) Nat Rev Cancer 6:130–140

    Article  PubMed  CAS  Google Scholar 

  13. Slatore CG, Au DH, Littman AJ, Satia JA, White E (2009) Cancer Epidemiol Biomarkers Prev 18:1203–1207

    Article  PubMed  CAS  Google Scholar 

  14. Wall RJ, Shyr Y, Smalley W (2007) J Thorac Oncol 2:109–114

    PubMed  Google Scholar 

  15. Kim K, Yoon J, Kim JK, Baek SJ, Eling TE, Lee WJ, Ryu J, Lee JG, Lee J, Yoo J (2004) Biochem Biophys Res Commun 325:1298–1303

    Article  PubMed  CAS  Google Scholar 

  16. Johnsen JI, Lindskog M, Ponthan F, Pettersen I, Elfman L, Orrego A, Sveinbjornsson B, Kogner P (2005) Cancer Lett 228:195–201

    Article  PubMed  CAS  Google Scholar 

  17. Wu WKK, Sung JJY, Lee CW, Wu J, Cho CH (2010) Cancer Lett 295:7–16

    Article  PubMed  CAS  Google Scholar 

  18. Thun MJ, Henley SJ, Patron C (2002) J Natl Cancer Inst 94:252–266

    Article  PubMed  CAS  Google Scholar 

  19. de Groot DJA, de Vries EGE, Groen HJM, de Jong S (2007) Crit Rev Oncol Hematol 61:52–69

    Article  PubMed  Google Scholar 

  20. Ribeiro G, Benadiba M, Colquhoun A, de Oliveira Silva D (2008) Polyhedron 27:1131–1137

    Article  CAS  Google Scholar 

  21. Subbaramaiah K, Dannenberg AJ (2003) Trends Pharmacol Sci 24:96–102

    Article  PubMed  CAS  Google Scholar 

  22. Soh J, Weinstein IB (2003) Prog Exp Tumor Res 37:211–233

    Google Scholar 

  23. Zhang T, Otevrel T, Gao ZQ, Gao ZP, Ehrlich SM, Fields JZ, Boman BM (2001) Cancer Res 61:8664–8667

    PubMed  CAS  Google Scholar 

  24. Castellone MD, Teramoto H, Gutkind JS (2006) Cancer Res 66:11085–11088

    Article  PubMed  CAS  Google Scholar 

  25. Oba M, Miwa K, Fujimura T, Harada S, Sasaki S, Hattori T (2008) Int J Cancer 123:1491–1498

    Article  PubMed  CAS  Google Scholar 

  26. Campione E, Diluvio L, Paternò EJ, Chimenti S (2010) Am J Clin Dermatol 11:45–50

    Article  PubMed  Google Scholar 

  27. Ding H, Han C, G-D′Ambrosia R, Steele VE, D’Ambrosia SM (2003) Int J Cancer 107:830–836

    Article  PubMed  CAS  Google Scholar 

  28. Sporn MB, Suh N (2000) Carcinogenesis 21:525–530

    Article  PubMed  CAS  Google Scholar 

  29. Ritland SR, Gendler SJ (1999) Carcinogenesis 20:51–58

    Article  PubMed  CAS  Google Scholar 

  30. Kern MA, Schubert D, Sahi D, Schoneweiß MM, Moll I, Haugg AM, Dienes HP, Breuhahn K, Schirmacher P (2002) Hepatology 36:885–894

    PubMed  CAS  Google Scholar 

  31. Zhang XC, Lippard SJ (2003) Curr Opin Chem Biol 7:481–489

    Article  PubMed  CAS  Google Scholar 

  32. Sorenson JRJ (1982) In: Sigel H (ed) Metal ions in biological systems, vol 14. Marcel Dekker, New York, pp 77–124

  33. Kato M, Muto Y (1988) Coord Chem Rev 92:45–83

    Article  CAS  Google Scholar 

  34. Sorenson JRJ (1989) Prog Med Chem 26:437–568

    Article  PubMed  CAS  Google Scholar 

  35. Bonin AM, Yáñez JA, Fukuda C, Teng XW, Dillon CT, Hambley TW, Lay PA, Davies NM (2010) Cancer Chemother Pharmacol 66:755–764

    Article  PubMed  CAS  Google Scholar 

  36. Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Zhou Q, Davies NM, Biffin JR, Regtop HL (2003) Chem Res Toxicol 16:28–37

    Article  PubMed  CAS  Google Scholar 

  37. Sorenson JRJ (1984) Chem Br 20:1110–1113

    CAS  Google Scholar 

  38. Howell JMC, Gawthorne JM (1987) Copper in animals and man, vol 2, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  39. Howell JMC, Gawthorne JM (1987) Copper in animals and man, vol 1, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  40. Milanino R, Mauro U, Marrella M, Pasqualicchio M, Gasperini R, Velo G (1995) In: Berthon G (ed) Handbook of metal–ligand interactions in biological fluids. Marcel Dekker, New York, pp 886–899

  41. Defazio S, Cini R (2003) Polyhedron 22:1355–1366

    Article  CAS  Google Scholar 

  42. Defazio S, Cini R (2002) J Chem Soc Dalton Trans 1888–1897

  43. Cini R (2000) Comments Inorg Chem 22:151–186

    Article  CAS  Google Scholar 

  44. Di Leo D, Berrettini F, Cini R (1998) J Chem Soc Dalton Trans 1993–2000

  45. Cini R (1996) J Chem Soc Dalton Trans 111–116

  46. Cini R, Pogni R, Basosi R, Donati A, Rossi C, Sabadini L, Rollo L, Lorenzini S, Gelli R, Marcolongo R (1995) Metal Based Drugs 2:43–56

    Article  PubMed  CAS  Google Scholar 

  47. Cini R, Giorgi G, Cinquantini A, Rossi C, Sabat M (1990) Inorg Chem 29:5197–5200

    Article  CAS  Google Scholar 

  48. Cini R, Tamasi G, Defazio S, Hursthouse MB (2007) J Inorg Biochem 101:1140–1152

    Article  PubMed  CAS  Google Scholar 

  49. Mohamed Gehad G, El-Gamel Nadia EA (2004) Vib Spectrosc 36:97–104

    Article  Google Scholar 

  50. Zayed MA, Nour El-Dien FA, Mohamed GG, El-Gamel NEA (2007) J Mol Struct 841:41–50

    Article  CAS  Google Scholar 

  51. Christofis P, Katsarou M, Papakyriakou A, Sanakis Y, Katsaros N, Psomas G (2005) J Inorg Biochem 99:2197–2210

    Article  PubMed  CAS  Google Scholar 

  52. Zayed MA, Nour El-Dien FA, Mohamed GG, El-Gamel NEA (2004) Spectrochim Acta Part A 60:2843–2852

    Article  CAS  Google Scholar 

  53. Tamasi G, Casolaro M, Magnani A, Sega A, Chiasserini L, Messori L, Gabbiani C, Valiahdi SM, Jakupec MA, Keppler BK, Hursthouse MB, Cini R (2010) J Inorg Biochem 104:799–814

    Article  PubMed  CAS  Google Scholar 

  54. Tamasi G, Serinelli F, Consumi M, Magnani A, Casolaro M, Cini R (2008) J Inorg Biochem 102:1862–1873

    Article  PubMed  CAS  Google Scholar 

  55. Tamasi G (2010) Open Crystallogr J 3:41–53

    Article  CAS  Google Scholar 

  56. Neault JF, Naoui M, Manfait M, Tajmir-Riahi HA (1996) FEBS Lett 382:26–30

    Article  PubMed  CAS  Google Scholar 

  57. Roy S, Banerjee R, Sarkar M (2006) J Inorg Biochem 100:1320–1331

    Article  PubMed  CAS  Google Scholar 

  58. Bloomfield VA, Crothers DM, Tinoco DM (2000) Nucleic acids: structures, properties and functions. University Science Books, Sausalito, pp 535–591

  59. Segal E, Widom J (2009) Curr Opin Struct Biol 19:65–71

    Article  PubMed  CAS  Google Scholar 

  60. Yuan H, Quintana J, Dickerson J (1992) Biochemistry 31:8009–8021

    Article  PubMed  CAS  Google Scholar 

  61. Premilat S, Albiser G (2001) Eur Biophys J 30:404–410

    Article  PubMed  CAS  Google Scholar 

  62. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Nucleic Acids Res 37:1713–1725

    Article  PubMed  CAS  Google Scholar 

  63. Breslauer KJ, Remeta DP, Chou WY, Ferrante R, Curry J, Zaunczkowski D, Synder JG, Marky LA (1987) Proc Natl Acad Sci USA 84:8922–8926

    Article  PubMed  CAS  Google Scholar 

  64. Chakraborti S, Bhattacharyya B, Dasgupta D (2002) J Phys Chem B 106:6947–6953

    Article  Google Scholar 

  65. Mir MA, Majee S, Das S, Dasgupta D (2003) Bioorg Med Chem 11:2791–2801

    Article  PubMed  CAS  Google Scholar 

  66. Li HJ, Crothers DM (1969) J Mol Biol 39:461–477

    Article  PubMed  CAS  Google Scholar 

  67. Aich P, Dasgupta D (1995) Biochemistry 34:1376–1385

    Article  PubMed  CAS  Google Scholar 

  68. Lackowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  69. Dimitrakopoulou A, Dendrinou-Samara C, Pantazaki AA, Alexiou M, Nordlander E, Kessissoglou DP (2008) J Inorg Biochem 102:618–628

    Article  PubMed  CAS  Google Scholar 

  70. Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) J Inorg Biochem 105:476–489

    Article  PubMed  CAS  Google Scholar 

  71. Bischoff G, Hoffman S (2002) Curr Med Chem 9:321–348

    CAS  Google Scholar 

  72. Werner MH, Gronenborn AM, Clore GM (1996) Science 271:778–784

    Article  PubMed  CAS  Google Scholar 

  73. Reddy BSP, Sondhi SM, Lown JW (1999) Pharmacol Ther 84:1–111

    Article  PubMed  CAS  Google Scholar 

  74. Wilson WD, Tanious FA, Barton HJ, Jones RL, Fox K, Wydra RL, Strekowski L (1990) Biochemistry 29:8452–8461

    Article  PubMed  CAS  Google Scholar 

  75. Tanious FA, Veal JM, Buczak H, Ratmeyer L, Wilson WD (1992) Biochemistry 31:3103–3112

    Article  PubMed  CAS  Google Scholar 

  76. Degtyareva NN, Wallace BD, Bryant AR, Loo KM, Petty JT (2007) Biophys J 92:959–965

    Article  PubMed  CAS  Google Scholar 

  77. Manzini G, Barcellona ML, Avitabile M, Quadrifoglio F (1983) Nucleic Acids Res 11:8861–8876

    Article  PubMed  CAS  Google Scholar 

  78. Jia T, Jiang Z-X, Wang K, Li Z-Y (2006) Biophys Chem 119:295–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dipak Dasgupta of the Biophysics Division of the Saha Institute of Nuclear Physics for providing us with DAPI. S.C. thanks the Council of Scientific and Industrial Research (CSIR), India, for providing her with a fellowship for her PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munna Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Sehanobish, E. & Sarkar, M. Binding of Cu(II) complexes of oxicam NSAIDs to alternating AT and homopolymeric AT sequences: differential response to variation in backbone structure. J Biol Inorg Chem 17, 475–487 (2012). https://doi.org/10.1007/s00775-011-0870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0870-z

Keywords

Navigation