Skip to main content

Advertisement

Log in

Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch

  • Report
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A redox luminescence switch was prepared by doping hydroxyapatite nanoparticles with CePO4:Tb. The resulting multifunctional material exhibits good biocompatibility, biological affinity, and potential drug-carrying capability. The luminescent hydroxyapatite nanoparticles may find important applications in biomedical diagnostics, drug delivery, and biological sensors.

Graphical abstract

This work demonstrated a biocompatible redox luminescence switch based on hydroxyapatite nanoparticles. The as-synthesized multifunctional nanoparticles have a large surface area and exhibit high biological affinity. This study will be quite relevant for developing a new system that may be applied in studying enzyme or protein activities based on fluorescent nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hench LL (1991) J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  2. Sautier JM (1991) Cells Mater 1:209–217

    CAS  Google Scholar 

  3. Korbas M, Rokita E, Meyer-Klaucke W, Ryczek J (2004) J Biol Inorg Chem 9:67–76

    Article  PubMed  CAS  Google Scholar 

  4. Furuzono T, Masuda M, Okada M, Yasuda S, Kadono H, Tanaka R, Miyatake K (2006) ASAIO J 52:315–320

    Article  PubMed  CAS  Google Scholar 

  5. Jiang G, Shi D (1999) J Biomed Mater Res 48:117–120

    Article  PubMed  CAS  Google Scholar 

  6. Ma M, Zhu Y, Li L, Cao S (2008) J Mater Chem 18:2722–2727

    Article  CAS  Google Scholar 

  7. Achelhi K, Masse S, Laurent G, Saoiabi A, Laghzizil A, Coradin T (2010) Dalton Trans 39:10644–10651

    Article  PubMed  CAS  Google Scholar 

  8. Bauer IW, Li SP, Han YC, Yuan L, Yin MZ (2008) J Mater Sci Mater Med 19:1091–1095

    Article  PubMed  CAS  Google Scholar 

  9. Doata A, Fanjulb M, Pellec F, Hollandeb E, Lebuglea A (2003) Biomaterials 24:3365–3371

    Article  Google Scholar 

  10. Cao H, Zhang L, Zheng H, Wang Z (2010) J Phys Chem C 114:18352–18357

    Article  CAS  Google Scholar 

  11. Chandanshive B, Dyondi D, Ajgaonkar VR, Banerjee R, Khushalani D (2010) J Mater Chem 20:6923–6928

    Article  CAS  Google Scholar 

  12. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH, Cheng JJ (2004) J Mater Chem 14:1336–1341

    Article  CAS  Google Scholar 

  13. Wu J, Ye Z, Wang G, Jin D, Yuan J, Guan Y, Piper J (2009) J Mater Chem 19:1258–1264

    Article  CAS  Google Scholar 

  14. Klimov VI, Mikhailovsky AA, Xu S, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Science 290:314–317

    Article  PubMed  CAS  Google Scholar 

  15. Heer S, Lehmann O, Haase M, Güdel HU (2003) Angew Chem Int Ed 42:3179–3182

    Article  CAS  Google Scholar 

  16. Meiser F, Cortez C, Caruso F (2004) Angew Chem Int Ed 43:5954–5957

    Article  CAS  Google Scholar 

  17. Cao M, Hu C, Wu Q, Guo C, Qi Y, Wang E (2005) Nanotechnology 16:282–286

    Article  PubMed  CAS  Google Scholar 

  18. Riwotzki K, Meyssamy H, Kornowski A, Haase MJ (2000) J Phys Chem B 104:2824–2828

    Article  CAS  Google Scholar 

  19. Wang X, Gao M (2006) J Mater Chem 16:1360–1365

    Article  CAS  Google Scholar 

  20. Li Q, Yam VW-W (2007) Angew Chem Int Ed 46:3486–3489

    Article  CAS  Google Scholar 

  21. Chen G, Sun S, Zhao W, Xu S, You T (2008) J Phys Chem C 112:20217–20221

    Article  CAS  Google Scholar 

  22. Wang W, Shia D (2006) Appl Phys Lett 89:183106-1–183106-3

    Google Scholar 

  23. Wang Z, Quan Z, Lin J, Fang J (2005) J Nanosci Nanotechnol 5:1532–1536

    Article  PubMed  CAS  Google Scholar 

  24. Rambabu U, Munirathnamdu NR (2002) Mater Chem Phys 78:160–169

    Article  CAS  Google Scholar 

  25. Hashimoto N, Takada Y, Sato K, Ibuki S (1991) J Lumin 48–49:893–897

    Article  Google Scholar 

  26. Gulnar AK, Sudarsan V, Vatsa RK, Hubli RC, Gautam UK, Vinu A, Tyagi AK (2009) Cryst Growth Des 9:2451–2459

    Article  CAS  Google Scholar 

  27. Rahim SA, Amin D, Bashir WA (1984) Microchem J 30:53–57

    Article  CAS  Google Scholar 

  28. Sultan SM, Hassan YAM, Ibrahim KEE (1999) Analyst 124:917–921

    Article  PubMed  CAS  Google Scholar 

  29. Miura Y, Hatakeyama M, Hosino T, Haddad PR (2002) J Chromatogr A 956:77–84

    Article  PubMed  CAS  Google Scholar 

  30. Kandori K, Toshima S, Wakamura M, Fukusumi M, Morisada Y (2010) J Phys Chem B 114:2399–2404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Foundation of Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and the NSFC (20171019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Decheng Bai or Zhengzhi Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Xi, P., Xie, G. et al. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch. J Biol Inorg Chem 16, 1135–1140 (2011). https://doi.org/10.1007/s00775-011-0815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0815-6

Keywords

Navigation