Skip to main content

Advertisement

Log in

Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

[ImH][trans-RuIIICl4(DMSO)(Im)] (where DMSO is dimethyl sulfoxide and Im is imidazole) (NAMI-A) is an antimetastatic prodrug currently in phase II clinical trials. The mechanisms of action of this and related Ru-based anticancer agents are not well understood, but several cellular targets have been suggested. Although Ru has been observed to bind to DNA following in vitro NAMI-A exposure, little is known about Ru–DNA interactions in vivo and even less is known about how this or related metallodrugs might influence cellular RNA. In this study, Ru accumulation in cellular RNA was measured following treatment of Saccharomyces cerevisiae with NAMI-A. Drug-dependent growth and cell viability indicate relatively high tolerance, with approximately 40% cell death occurring at 6 h for 450 μM NAMI-A. Significant dose-dependent accumulation of Ru in cellular RNA was observed by inductively coupled plasma mass spectrometry measurements on RNA extracted from yeast treated with NAMI-A. In vitro, binding of Ru species to drug-treated model DNA and RNA oligonucleotides at pH 6.0 and 7.4 was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence and absence of the reductant ascorbate. The extent of Ru–nucleotide interactions increases slightly with lower pH and significantly in the presence of ascorbate, with differences in observed species distribution. Taken together, these studies demonstrate the accumulation of aquated and reduced derivatives of NAMI-A on RNA in vitro and in cellulo, and enhanced binding with nucleic acid targets in a tumorlike acidic, reducing environment. To our knowledge, this is also the first study to characterize NAMI-A treatment of S. cerevisiae, a genetically tractable model organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cfu:

Colony-forming units

DMSO:

Dimethy sulfoxide

ICP-MS:

Inductively coupled plasma mass spectrometry

Im:

Imidazole

MALDI:

Matrix-assisted laser desorption/ionization

OD600 :

Optical density at 600 nm

NAMI:

[Na][trans-RuIIICl4(DMSO)(Im)]

NAMI-A:

[ImH][trans-RuIIICl4(DMSO)(Im)]

THAP:

2′,4′,6′-Trihydroxyacetophenone

TOF:

Time-of-flight

YEPD:

Yeast extract–peptone–glucose

References

  1. Hannon MJ (2007) Pure Appl Chem 79:2243–2261

    Article  CAS  Google Scholar 

  2. Dyson PJ, Sava G (2006) Dalton Trans 1929–1933

  3. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) Clin Cancer Res 10:3717–3727

    Article  PubMed  CAS  Google Scholar 

  4. Levina A, Mitra A, Lay PA (2009) Metallomics 1:458–470

    Article  PubMed  CAS  Google Scholar 

  5. Kostova I (2006) Curr Med Chem 13:1085–1107

    Article  PubMed  CAS  Google Scholar 

  6. Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) J Pharmacol Exp Ther 289:559–564

    PubMed  CAS  Google Scholar 

  7. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Int J Cancer 68:60–66

    Article  PubMed  CAS  Google Scholar 

  8. Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Eur J Cancer 38:427–435

    Article  PubMed  CAS  Google Scholar 

  9. Ravera M, Baracco S, Cassino C, Zanello P, Osella D (2004) Dalton Trans 2347–2351

  10. Gullino PM (1976) Adv Exp Biol Med 75:521–536

    CAS  Google Scholar 

  11. Richard DE, Berra E, Pouyssegur J (1999) Biochem Biophys Res Commun 266:718–722

    Article  PubMed  CAS  Google Scholar 

  12. Gerweck LE, Vijayappa S, Kozin S (2006) Mol Cancer Ther 5:1275–1279

    Article  PubMed  CAS  Google Scholar 

  13. Brabec V, Novakova O (2006) Drug Resist Update 9:111–122

    Article  CAS  Google Scholar 

  14. Pizarro AM, Sadler PJ (2009) Biochimie 91:1198–1211

    Article  PubMed  CAS  Google Scholar 

  15. Pluim D, van Waardenburg RCAM, Beijnen JH, Schellens JHM (2004) Cancer Chemother Pharmacol 54:71–78

    Article  PubMed  CAS  Google Scholar 

  16. Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) Arch Biochem Biophys 376:156–162

    Article  PubMed  CAS  Google Scholar 

  17. Messori L, Casini A, Vullo D, Haroutiunian SG, Dalian EB, Orioli P (2000) Inorg Chim Acta 303:283–286

    Article  CAS  Google Scholar 

  18. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  19. Bacac M, Hotze ACG, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) J Inorg Biochem 98:402–412

    Article  PubMed  CAS  Google Scholar 

  20. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 1796–1802

  21. Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) J Biol Inorg Chem 15:677–688

    Article  PubMed  CAS  Google Scholar 

  22. Malina J, Novakova O, Keppler BK, Alessio E, Brabec V (2001) J Biol Inorg Chem 6:435–445

    Article  PubMed  CAS  Google Scholar 

  23. Mattick JS (2004) Nat Rev Genet 5:316–323

    Article  PubMed  CAS  Google Scholar 

  24. Kong QM, Lin CLG (2010) Cell Mol Life Sci 67:1817–1829

    Article  PubMed  CAS  Google Scholar 

  25. Olmo N, Turnay J, González de Buitrago G, López de Silanes I, Gavilanes JG, Lizarbe MA (2001) Eur J Biochem 268:2113–2123

    Article  PubMed  CAS  Google Scholar 

  26. Jetzt AE, Cheng JS, Tumer NE, Cohick WS (2009) Int J Biochem Cell B 41:2503–2510

    Article  CAS  Google Scholar 

  27. Mroczek S, Kufel J (2008) Nucleic Acids Res 36:2874–2888

    Article  PubMed  CAS  Google Scholar 

  28. Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) Mol Cell 37:668–678

    Article  PubMed  CAS  Google Scholar 

  29. Akaboshi M, Kawai K, Maki H, Akuta K, Ujeno Y, Miyahara T (1992) Jpn J Cancer Res 83:522–526

    Article  PubMed  CAS  Google Scholar 

  30. Schmittgen TD, Ju J-F, Danenberg KD, Danenberg PV (2003) Int J Oncol 23:785–789

    PubMed  CAS  Google Scholar 

  31. Heminger KA, Hartson SD, Rogers J, Matts RL (1997) Arch Biochem Biophys 344:200–207

    Article  PubMed  CAS  Google Scholar 

  32. Menacho-Marquez M, Murguia JR (2007) Clin Trans Oncol 9:221–228

    Article  CAS  Google Scholar 

  33. McCarthy JEG (1998) Microbiol Mol Biol Rev 62:1492–1553

    PubMed  CAS  Google Scholar 

  34. Phizicky EM, Hopper AK (2010) Genes Dev 24:1832–1860

    Article  PubMed  Google Scholar 

  35. Barr MM (2003) Physiol Genomics 13:15–24

    PubMed  CAS  Google Scholar 

  36. Alessio E, Balducci G, Calligaris M, Costa G, Attia WM, Mestroni G (1991) Inorg Chem 30:609–618

    Article  CAS  Google Scholar 

  37. Witkowsky L (2006) Senior thesis. Willamette University

  38. Tyson CB, Lord PG, Wheals AE (1979) J Bacteriol 138:92–98

    PubMed  CAS  Google Scholar 

  39. Chapman EG, DeRose VJ (2010) J Am Chem Soc 132:1946–1952

    Article  PubMed  CAS  Google Scholar 

  40. Ragas JA, Simmons TA, Limbach PA (2000) Analyst 125:575–581

    Article  PubMed  CAS  Google Scholar 

  41. Sauer S (2007) J Biochem Biophys Methods 70:311–318

    Article  PubMed  CAS  Google Scholar 

  42. Christian NP, Reilly JP, Mokler VR, Wincott FE, Ellington AD (2001) J Am Soc Mass Spectrom 12:744–753

    Article  PubMed  CAS  Google Scholar 

  43. National Institute of Standards and Technology (2010) Physical measurement laboratory: basic atomic spectroscopic data. http://physics.nist.gov/PhysRefData/Handbook/Tables/rutheniumtable1.htm. Accessed 5 Jan 2011

  44. Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Inorg Chem 45:9006–9013

    Article  PubMed  CAS  Google Scholar 

  45. Bergamo A, Messori L, Piccoli F, Cocchietto M, Sava G (2003) Invest New Drugs 21:401–411

    Article  PubMed  CAS  Google Scholar 

  46. Warner JR (1999) Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  47. Hinnebusch AG (2009) Genes Dev 23:891–895

    Article  PubMed  CAS  Google Scholar 

  48. Horn HF, Vousden KH (2007) Oncogene 26:1306–1316

    Article  PubMed  CAS  Google Scholar 

  49. Brindell M, Stawoska I, Supel J, Skoczowski A, Stochel G, van Eldik R (2008) J Biol Inorg Chem 13:909–918

    Article  PubMed  CAS  Google Scholar 

  50. Brindell M, Piotrowska D, Shoukry AA, Stochel G, van Eldik R (2007) J Biol Inorg Chem 12:809–818

    Article  PubMed  CAS  Google Scholar 

  51. Calligaris M, Carugo O (1996) Coord Chem Rev 153:83–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andy Ungerer for assistance with the ICP-MS experiments, the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University, J. David Sumega for synthesizing and characterizing NAMI-A, and Laurie Graham for assistance with protocols and imaging. The Stevens laboratory at the University of Oregon is gratefully acknowledged for the use of a Carl Zeiss Axioplan 2 fluorescence microscope and for a gift of the BY4741 strain. This work was supported by a Willamette University Atkinson Grant (K.L.M.H.), the NIH (GM058096, V.J.D.), and the University of Oregon (V.J.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria J. DeRose or Karen L. McFarlane Holman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hostetter, A.A., Miranda, M.L., DeRose, V.J. et al. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro. J Biol Inorg Chem 16, 1177–1185 (2011). https://doi.org/10.1007/s00775-011-0806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0806-7

Keywords

Navigation