Skip to main content
Log in

Synthesis of hydroxyferrocifen and its abilities to protect DNA and to scavenge radicals

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to clarify the effect of the position of the hydroxyl group on the antioxidant capacity of hydroxyferrocifen by means of a chemical kinetic method. Propionylferrocene and benzoylferrocene condensed with 4-hydroxydiphenylketone, 3,4-dihydroxydiphenylketone, and 4,4′-dihydroxydiphenylketone to form FP3, FP4, FB3, and FB4 with a single hydroxyl group and FP34, FP44, FB34, and FB44 with two hydroxyl groups. These hydroxyferrocifens were applied in Cu2+/glutathione (GSH)-induced, hydroxyl radical (·OH)-induced, and 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation of DNA, and in trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS). It was found that these hydroxyferrocifens acted as prooxidants in Cu2+/GSH-induced oxidation of DNA and exhibited very weak effects on ·OH-induced oxidation of DNA. FP3, FP4, FB3, and FB4 can only retard the rate of AAPH-induced oxidation of DNA, whereas FP44, FB44, FB34, and FP34 can trap 11.9, 7.1, 6.2, and 4.9 radicals, respectively, in AAPH-induced oxidation of DNA. The ability to trap ABTS followed the order FB4 > FP44 > FB34 > FB44 > FP34. It was concluded that two hydroxyl groups at the para position of two benzene rings rather than at the ortho position in the same benzene ring were beneficial for hydroxyferrocifen to increase the antioxidant capacity.

Graphical abstract

Antioxidant effectiveness of hydroxyferrocifen derivatives were evaluated in the experimental systems of Cu2+/glutathione-induced, ·OH-induced, and 2,2′-azobis(2-amidinopropane hydrochloride) induced oxidation of DNA and of trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Appl Organomet Chem 19:1–10

    Article  CAS  Google Scholar 

  2. van Staveren DR, Metzler-Nolte N (2004) Chem Rev 104:5931–5985

    Article  PubMed  Google Scholar 

  3. Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, Labib AA (2007) Appl Organomet Chem 21:613–625

    Article  CAS  Google Scholar 

  4. Top S, Tang J, Vessières A, Carrez D, Provot C, Jaouen G (1996) Chem Commun 955–956

  5. Top S, Vessières A, Leclercq G, Quivy J, Tang J, Vaissermann J, Huché M, Jaouen G (2003) Chem Eur J 9:5223–5236

    Article  PubMed  CAS  Google Scholar 

  6. Top S, Vessières A, Cabestaing C, Laïos I, Leclercq G, Provot C, Jaouen G (2001) J Organomet Chem 637–639:500–506

    Article  Google Scholar 

  7. Hillard EA, Vessières A, Jaouen G (2010) Top Organomet Chem 32:81–117

    Article  CAS  Google Scholar 

  8. Pigeon P, Top S, Vessières A, Huché M, Hillard EA, Salomon E, Jaouen G (2005) J Med Chem 48:2814–2821

    Article  PubMed  CAS  Google Scholar 

  9. Nikitin K, Ortin Y, Müller-Bunz H, Plamont M-A, Jaouen G, Vessières A, McGlinchey MJ (2010) J Organomet Chem 695:595–608

    Article  CAS  Google Scholar 

  10. Zanellato I, Heldt J-M, Vessières A, Jaouen G, Osella D (2009) Inorg Chim Acta 362:4037–4042

    Article  CAS  Google Scholar 

  11. Vessières A, Corbet C, Heldt JM, Lories N, Jouy N, Laïos I, Leclercq G, Jaouen G, Toillon R-A (2010) J Inorg Biochem 104:503–511

    Article  PubMed  Google Scholar 

  12. Hamels D, Dansette PM, Hillard EA, Top S, Vessiéres A, Herson P, Jaouen G, Mansuy D (2009) Angew Chem Int Ed 48:9124–9126

    Article  CAS  Google Scholar 

  13. Hillard EA, Pigeon P, Vessières A, Amatore C, Jaouen G (2007) Dalton Trans 5073–5081

  14. Buriez O, Heldt JM, Labbé E, Vessiéres A, Jaouen G, Amatore C (2008) Chem Eur J 14:8195–8203

    Article  PubMed  CAS  Google Scholar 

  15. Bowry VW, Stocker R (1993) J Am Chem Soc 115:6029–6044

    Article  CAS  Google Scholar 

  16. Li Y-F, Liu Z-Q, Luo X-Y (2010) J Agric Food Chem 58:4126–4131

    Article  PubMed  CAS  Google Scholar 

  17. Munoz-Munoz JL, Garcia-Molina F, Varon R, Tudela J, García-Cánovas F, Rodriguez-Lopez JN (2010) J Agric Food Chem 58:2062–2070

    Article  PubMed  CAS  Google Scholar 

  18. Top S, Dauer B, Vaissermann J, Jaouen G (1997) J Organomet Chem 541:355–361

    Article  CAS  Google Scholar 

  19. Allard E, Passirani C, Garcion E, Pigeon P, Vessières A, Jaouen G, Benoit J-P (2000) C R Acad Sci Ser IIc 3:89–93

    Google Scholar 

  20. Reed CJ, Douglas KT (1991) Biochem J 275:601–608

    PubMed  CAS  Google Scholar 

  21. Janicek MF, Haseltine WA, Henner WD (1985) Nucleic Acids Res 13:9011–9029

    Article  PubMed  CAS  Google Scholar 

  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  23. Maity B, Roy M, Banik B, Majumdar R, Dighe RR, Chakravarty AR (2010) Organometallics 29:3632–3641

    Article  CAS  Google Scholar 

  24. Prütz WA (1994) Biochem J 302:373–382

    PubMed  Google Scholar 

  25. Battin EE, Brumaghim JL (2008) J Inorg Biochem 102:2036–2042

    Article  PubMed  CAS  Google Scholar 

  26. Li P-Z, Liu Z-Q (2011) Eur J Med Chem 46:1821–1826

    Article  PubMed  CAS  Google Scholar 

  27. Zheng L-F, Dai F, Zhou B, Yang L, Liu Z-L (2008) Food Chem Toxicol 46:149–156

    Article  PubMed  CAS  Google Scholar 

  28. Hillard E, Vessiéres A, Thouin L, Jaouen G, Amatore C (2006) Angew Chem 118:291–296

    Article  Google Scholar 

  29. Zhu B-Z, Kitrossky N, Chevion M (2000) Biochem Biophys Res Commun 270:942–946

    Article  PubMed  CAS  Google Scholar 

  30. Vessières A, Top S, Pigeon P, Hillard E, Boubeker L, Spera D, Jaouen G (2005) J Med Chem 48:3937–3940

    Article  PubMed  Google Scholar 

  31. Zhang P, Omaye ST (2001) Food Chem Toxicol 39:239–246

    Article  PubMed  CAS  Google Scholar 

  32. Li G-X, Liu Z-Q, Wu D (2009) J Phys Org Chem 22:883–887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Jilin Provincial Foundation for Natural Science, China (201115017), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Qun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Zhao, C. & Liu, ZQ. Synthesis of hydroxyferrocifen and its abilities to protect DNA and to scavenge radicals. J Biol Inorg Chem 16, 1169–1176 (2011). https://doi.org/10.1007/s00775-011-0805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0805-8

Keywords

Navigation